

Automatic Term Extraction Using Statistical Techniques

A Comparative In-Depth Study & Applications

"This Thesis was Submitted in partial fulfillment of the requirements for the

Masters Degree in Scientific Computing

from The Faculty of Graduate Studies at Birzeit University – Palestine".

By

 Yousef Sabbah

Supervisors:

Dr. Yousef Abuzir

Dr. Haithem Abu-Rub

-August 2005-

A

To

The Memory of my Mother

B

ACKNOWLEDGEMENTS

I would like to thank Dr. Hassan Shibly; chairman of Scientific Computing

Master Program, for his interest and follow up.

I was very fortunate to be supervised by Dr. Yousef Abuzir from Quds Open

University and Dr. Haithem Abu-Rub. Besides encouragement, they took care of

the entire review process and problems encountered me while writing this thesis.

I do not forget Prof. Dr. Younis Amro, President of Quds Open University, for his

approval to continue my higher education, Eng. Imad Hodali, ICTC Manager, for

his help and support, Mr. Mustafa Tamim and Mr. Mohammad Hamarsheh for

their help and valuable suggestions during the development of ATEWB, all my

colleagues in ICTC, and all friends for their encouragement.

Lastly, all thanks and appreciations to my family for support and patience.

C

Table of Contents

Chapter Name Page

 LIST OF FIGURES.. H

 LIST OF TABLES .. J

 LIST OF ABBREVIATIONS.. K

 ABSTRACT ..P

1 INTRODUCTION.. 1

1.1 OVERVIEW.. 1
1.2 MOTIVATION .. 5
1.3 ATEWB... 6
1.4 CONTRIBUTIONS ... 7
1.5 OUTLINE OF THIS THESIS .. 7

2 RELATED WORK .. 9

2.1 LANGUAGE AND INFORMATION .. 9
2.2 LANGUAGE ENGINEERING .. 9
2.3 COMMUNICATION OF INFORMATION... 10
2.4 NATURAL LANGUAGE PROCESSING.. 11

2.4.1 NLP in Information Retrieval... 13
2.5 INFORMATION RETRIEVAL.. 15

2.5.1 Digital Audio Retrieval .. 16
2.5.2 Digital Video Retrieval... 17

2.6 TEXT RETRIEVAL AND AUTOMATIC TERM EXTRACTION (ATE)................................... 19
2.6.1 Index Terms.. 20
2.6.2 Index terms, topics, and terminological terms ... 21
2.6.3 Index Term Corpus... 22
2.6.4 Manual Indexing .. 23
2.6.5 Comparison of Manual and Automatic Indexing ... 24

2.7 ATE APPROACHES .. 26
2.7.1 Statistical Techniques... 26
2.7.2 Neural Networks and Machine learning .. 29

D

2.7.2.1 Learning Process in Neural Networks31

2.7.2.2 Application of Neural Network Models in IR31

2.7.2.2.1 The application of Self-Organizing Feature Map (SOFM) .32

2.7.2.2.2 The application of Hopfield Net ..35

2.7.2.2.3 The application of MLP and Semantic Networks................36
2.7.3 Probabilistic Models .. 37
2.7.4 Syntactic Analysis... 39

2.7.4.1 Pre-search and Post-search ..40

2.7.4.2 Syntactic Analysis..40

2.7.4.3 Phrase Matching ..42

2.7.4.4 Syntactic Analysis Evaluation ...42
2.8 IR AND ATE EVALUATION ... 42
2.9 SUMMARY .. 46

3 AUTOMATIC TERM EXTRACTION (ATE) .. 47

3.1 ATE STAGES .. 47
3.2 SINGLE TERM VS. PHRASE EXTRACTION .. 48
3.3 ATE STATISTICAL TECHNIQUES... 50

3.3.1 Term Frequency ... 53
3.3.2 Inverse Document Frequency... 55
3.3.3 Combination of TF and IDF... 58
3.3.4 Term Discrimination Value Model... 60

3.4 ATE AUXILIARY APPROACHES .. 63
3.4.1 Porter’s Stemming.. 63
3.4.2 Stop-words Removal... 65

3.5 SUMMARY .. 67

4 AUTOMATIC TERM EXTRACTION WORKBENCH (ATEWB) SYSTEM

DESCRIPTION.. 68

4.1 AN OVERVIEW OF ATEWB.. 68
4.2 ATEWB PACKAGE ... 70

4.2.1 Design Issues.. 73
4.3 ATEWB SYSTEM REQUIREMENTS ... 74

4.3.1 Hardware Requirements .. 74
4.3.2 Software Requirements... 76

4.4 ATEWB MAIN CLASSES AND ALGORITHMS .. 76

E

4.4.1 Driver Class ... 77
4.4.2 GUI, Navigation and Connection Classes.. 80

4.4.2.1 Dialog and fileNewDialog Classes ..81

4.4.2.2 FileNavigator Class..81

4.4.2.3 dbConnection Class ...81
4.4.3 Statistical Techniques... 82

4.4.3.1 Term Frequency Classes..82

4.4.3.2 IDF Classes ..85

4.4.3.3 TFxIDF Classes ...87

4.4.3.4 TDVM Classes...90
4.4.4 ATE Auxiliary Approaches... 94

4.4.4.1 Stop Words and Parsing Class ...94

4.4.4.2 Porter’s Stemming Algorithm (Stemmer Class)........................97
4.4.5 Evaluation Class .. 101

4.5 SUMMARY .. 103

5 A COMPARATIVE STUDY... 104

5.1 COMPARISON METHODOLOGY .. 105
5.1.1 Comparison Criteria .. 105
5.1.2 Main Factors Affecting Performance and Accuracy.. 105

5.2 EXPERIMENTS, RESULTS AND DISCUSSION... 109
5.2.1 Experiment One.. 110

5.2.1.1 Objectives ..110

5.2.1.2 Setup ..110

5.2.1.3 Procedure ...110

5.2.1.4 Results..114

5.2.1.5 Discussion and Conclusions ..114
5.2.2 Experiment Two ... 116

5.2.2.1 Objectives ..116

5.2.2.2 Setup ..116

5.2.2.3 Procedure ...117

5.2.2.4 Results..118

5.2.2.5 Discussion and Conclusions ..122
5.2.3 Experiment Three ... 123

F

5.2.3.1 Objectives ..123

5.2.3.2 Setup ..123

5.2.3.3 Procedure ...124

5.2.3.4 Results..124

5.2.3.5 Discussion and Conclusions ..128
5.3 COMPARISON WITH PREVIOUS STUDIES.. 130
5.4 SUMMARY .. 131

6 CONCLUSIONS AND FUTURE WORK.. 133

6.1 CONCLUSIONS .. 133
6.2 FUTURE WORK ... 134

BIBLIOGRAPHY.. 136

A. APPENDIX A ..I

B. APPENDIX B..IV

B.1 ATEWB SYSTEM INSTALLATION .. IV
B.1.1 Microsoft windows environment... IV
B.1.2 Linux RedHat environment... IV

C. APPENDIX C ...VI

C.1 WORKING WITH ATEWB ..VI
C.1.1 Using ATEWB .. VI

D. APPENDIX D ...XVIII

D.1 ATEWB JAVA AND MYSQL COMPLETE CODE... XVIII

G

List of Figures

FIGURE 2.1: COMMUNICATION PROCESS – THE DIFFERENT CONCEPTS. .. 11

FIGURE 2.2: A TYPICAL IR SYSTEM [9] ... 15

FIGURE 2.3: OVERLAP OF TERMINOLOGICAL TERMS, TOPICS AND INDEX TERMS.............................. 22

FIGURE 2.4: COMPARISON OF MANUAL WITH AUTOMATIC INDEXING .. 25

FIGURE 2.5: ATE-TECHNIQUES CLASSIFICATION .. 27

FIGURE 2.6: A SIMPLE NEURAL NETWORK ... 30

FIGURE 2.7: KOHONEN MODEL ... 33

FIGURE 2.8: HEAD-MODIFIER RELATIONS OF "SYNTACTIC ANALYSIS OF INDEX TERMS" 41

FIGURE 3.1: A PLOT OF HYPERBOLIC CURVE RELATING THE FREQUENCY AND RANK. 51

FIGURE 3.2: DOCUMENT VECTOR SPACE... 51

FIGURE 3.3: PORTER'S STEMMING ALGORITHM.. 64

FIGURE 4.1: MAIN STAGES OF ATEWB SYSTEM.. 69

FIGURE 4.2: UML DIAGRAM OF ATEWB PACKAGE .. 72

FIGURE 4.4: PSEUDO CODE FOR MAIN DRIVER.. 79

FIGURE 4.5: CLASS DIAGRAM OF TF CLASSES. .. 83

FIGURE 4.6: PSEUDO CODE OF TF() METHOD. ... 85

FIGURE 4.7: CLASS DIAGRAM OF IDF CLASSES.. 86

FIGURE 4.8: PSEUDO CODE OF IDF() METHOD... 87

FIGURE 4.9: CLASS DIAGRAM OF TFXIDF CLASSES. .. 88

FIGURE 4.10: PSEUDO CODE OF TFXIDF() METHOD... 90

FIGURE 4.11: CLASS DIAGRAM OF TDVM CLASSES... 91

FIGURE 4.12: PSEUDO CODE OF DISCVALUE() METHOD. .. 92

FIGURE 4.13: PSEUDO CODE OF AVGSIM() METHOD. ... 93

FIGURE 4.14: PSEUDO CODE OF COSINECORRFACTOR() METHOD. ... 94

FIGURE 4.15: STOP CLASS DIAGRAM.. 95

FIGURE 4.16: PSEUDO CODE OF STOP WORDS AND PARSING ALGORITHM... 97

FIGURE 4.17: STEMMER CLASS DIAGRAM. ... 98

FIGURE 4.18: PSEUDO CODE OF DOSTEMMING() METHOD IN PORTER’S ALGORITHM. 100

FIGURE 4.19: EVALUATION CLASS DIAGRAM... 102

FIGURE 5.1: COLLECTION SIZE VS. COMPUTATIONS TIME FOR TDVM. .. 107

H

FIGURE 5.2: RECALL VS. STATISTICAL TECHNIQUE/ FACTOR .. 113

FIGURE 5.3: PRECISION VS. STATISTICAL TECHNIQUE/ FACTOR .. 113

FIGURE 5.4: NOISE VS. STATISTICAL TECHNIQUE/ FACTOR ... 114

FIGURE 5.5: EFFECT OF INCREASING NUMBER OF RETRIEVED TERMS ON RECALL.......................... 120

FIGURE 5.6: EFFECT OF INCREASING NUMBER OF RETRIEVED TERMS ON PRECISION...................... 120

FIGURE 5.7: EFFECT OF INCREASING NUMBER OF RETRIEVED TERMS ON NOISE............................. 121

FIGURE 5.8: AVERAGE RECALL, PRECISION AND NOISE .. 121

FIGURE 5.9: RELATION BETWEEN R, P AND N FOR TF. .. 126

FIGURE 5.10: RELATION BETWEEN R, P AND N FOR TFXIDF. ... 127

FIGURE 5.11: R-P RELATIONSHIP FOR TFXIDF.. 127

FIGURE 5.12: AVERAGE RECALL, PRECISION AND NOISE .. 128
FIGURE C.1: ATEWB MAIN SCREEN..VI
FIGURE C.2: ATEWB FILE MENU...VII
FIGURE C .3: ATEWB NEW PROJECT DIALOG BOX ...VII
FIGURE C.4: ATEWB NEW PROJECT OPTIONS ... VIII
FIGURE C..5: ATEWB BROWSER.. VIII
FIGURE C.6: CREATE NEW DATABASE DIALOG BOX.. IX
FIGURE C.7: ATEWB DATABASE OPTIONS DIALOG BOX. .. X
FIGURE C.8: ATEWB ATE MENU WITH ITS SUBMENUS ... X
FIGURE C.9: CONDITIONS OF SELECTED INDEX TERMS. ...XI
FIGURE C.10: ATEWB TERM FREQUENCY RESULT SCREEN..XII
FIGURE C.11 ATEWB IDF RESULT SCREEN ...XII
FIGURE C.12: ATEWB TFXIDF RESULT SCREEN ... XIII
FIGURE C.13: ATEWB TDVM RESULT SCREEN... XIII
FIGURE C.14: ATEWB DOCUMENT SUMMERY ... XIV
FIGURE C.15: ATEWB TOOLS MENU... XV
FIGURE C.16: KEYWORDS LIST RESULT .. XVI
FIGURE C.17: ATEWB EVALUATION DIALOG BOX. ... XVI
FIGURE C.18: WINDOWS CALCULATOR...XVII

I

List of Tables

TABLE 1.1: CHAPTERS SUMMARY.. 8

TABLE 2.1: ATE EVALUATION MEASURES. .. 44

TABLE 3.1: STEPS OF PORTER’S STEMMING ALGORITHM ... 66

TABLE 4.1: PERFORMANCE EXPERIMENTS FOR ATEWB SYSTEM REQUIREMENTS 75

TABLE 4.2: ATEWB CLASSES AND INSTANCES USED TO CALL THEIR METHODS.............................. 77

TABLE 4.3: SUMMERY OF PORTER’S STEMMING METHODS .. 101

TABLE 5.1: SUMMARY OF FACTORS AFFECTING EXTRACTION RESULTS AND EXPECTED EFFECT 106

TABLE 5.2: EXPERIMENT 1 COLLECTION DESCRIPTION AND STATISTICS .. 111

TABLE 5.3: RECALL, PRECISION AND NOISE OF EXPERIMENT 1 WITH DIFFERENT CONDITIONS...... 112

TABLE 5.4: EXPERIMENT 2 COLLECTION DESCRIPTION. ... 117

TABLE 5.5: RECALL, PRECISION AND NOISE OF THREE PARTS OF EXPERIMENT2. 119

TABLE 5.6: AVERAGE RECALL, PRECISION AND NOISE OF EXPERIMENT 2 119

TABLE 5.7: COMPUTATION TIME ESTIMATION AND TERM STATISTICS OF EXPERIMENT3. 125

TABLE 5.8: EXPERIMENT3 COMPUTATIONS OF R, P AND N.. 125

TABLE 5.9: AVERAGE RECALL, PRECISION AND NOISE OF EXPERIMENT 3 126

J

List of Abbreviations

Abbreviation Meaning

ANSI American National Standards Institutes

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ATE Automatic Term Extraction

ATEWB Automatic Term Extraction WorkBench

ATN Augmented Transition Network

AVGSIM Average Similarity

AWT Abstract Window Toolkit (JAVA Package)

CPU Central Processing Unit

DB DataBase

DISCVALUE Discrimination Value

DM Discrimination Model

DMS Document Management Systems

DOCFREQ Document Frequency

DV Discrimination Value

GUI Graphical User Interface

HCI Human Computer Interaction

HMM Hidden Markov Model

HTM Hyper Text Markup

HTML Hyper Text Markup Language

I/O Input/ Output

K

IDF Inverse Document Frequency

IP Internet Protocol

IR Information Retrieval

JAVA JAVA Programming Language

JDBC Java DataBase Connector

JDK JAVA Development Kit

LINUX LINUX Operating System

Me Millennium version of Microsoft windows

MS Microsoft

MYSQL Database Engine supports Structured Query Language

NLP Natural Language Processing

NOVELL NOVELL Operating System

NT Network Technology Version of Microsoft windows

OS Operating System

RAM Random Access Memory

RTN Recursive Transition Network

SOM Self-Organizing Map

SPSS Statistics Package for the Social Science

SQL Structured Query Language

SSOM Scalable Self-Organizing Map

TDV Term Discrimination Value

TDVM Term Discrimination Value Model

TF Term Frequency

L

TFxIDF Combined Term Frequency-Inverse Document Frequency

TREC Text REtrieval Conference

UML Unified Modeling Language

UNIX UNIX Operating System

XML eXtensible Markup Language

XP Version of Microsoft windows 2002

M

 بسم ا الرحمن الرحيم

" بمثلهِ مدداًاقُل لَو كان البحر مداداً لكلماتِ ربي لنفد البحر قبلَ أن تنفد كلمات ربي ولو جئن"

دق ا العظيمص

 ملخــــــــص

خلال التحول الذي شهدناه فـي) Information Retrieval(بدأت فكرة استرجاع المعلومات

طرق تخزين المعلومات الثقافية والاجتماعية والعلمية من الأوراق والكتب إلى مكتبات رقميـة منتـشرة

كالصور والخرائط (ل نصوص أو وثائق مصورة على الشبكات العالمية، وتأتي هذه المعلومات على شك

في محاولة لجعـل اسـترجاع هـذه). الفيديو(أو صوت أو صور متحركة) والرسومات التقنية وغيرها

 Automatic(ً الكمية الهائلة من المعلومات بفاعلية كان لا بد من طريقة لاستنباط الكلمات المفتاحية آليا

Term Extraction .(لية تشكل حجر الأساس للعديد من التطبيقات ومنهـا محركـات هذه الطريقة الآ

وللتأكد مـن دقـة المعلومـات . ومكلفة أن يتم استنباط الكلمات المفتاحية يدوياً البحث، لأنها عملية شاقة

 .المسترجعة فإن الكلمات المفتاحية المستنبطة يجب أن تصف محتوى الوثائق المستنبطة منها وصفاً دقيقاً

حثون في هذا الموضوع بالعديد من المقترحات والطرق المختلفة لاسـتنباط الكلمـات تقدم البا

المفتاحية، بعضها يعتمد على الإحصاء والاحتمالات وبعضها الآخر يعتمد على التحليل اللغوي وغيرها،

تأتي هذه الأطروحة كمساهمة في كشف أوجه الاختلاف والتشابه وكـذلك محاسـن ومـساوئ الطـرق

، تكـرار)Term Frequency TF(تكرار الكلمات في الوثيقـة الواحـدة : ة المستخدمة وهيالإحصائي

 Inverse Document Frequency(الوثائق المحتوية على كلمة معينة ضمن مجموعة من الوثـائق

IDF(الدمج بين تكرار الكلمات وتكرار الوثائق ،)TFxIDF(والطريقة الرابعة هي نموذج قيم التمييز ،

من خلال دراسة مقارنـة بـين هـذه الطـرق) Term Discrimination Value Model(مات للكل

N

تستخدم للمقارنة من خلال)ATEWB(الإحصائية وتطوير أداة محوسبة لاستنباط الكلمات المفتاحية آلياً

دام تلك ثلاث تجارب تقييمية تبرز العوامل المؤثرة على دقة النتائج وذلك لتحديد الظروف المناسبة لاستخ

 .الطرق

تهدف الدراسة إلى زيادة فاعلية الطرق الإحصائية وتـسريعها مـن خـلال من ناحية أخرى،

والتي تختـصر العمليـات الحـسابية فـي) Database Engines(استخدام محركات قواعد البيانات

ين خوارزميات هذه الطرق بشكل ملحوظ، كما استخدمت في تسريع استرجاع الوثائق عن طريـق تخـز

 .نسخة منها في قاعدة البيانات

لأبحاث فـي)Abstracts(الوثائق المستخدمة في التجربة الأولى هي مجموعة من الملخصات

مجال الاستنباط الآلي للكلمات المفتاحية، والكلمات المفتاحية لها مستنبطة يـدوياً لمقارنتهـا بالكلمـات

 التجربة الثانية والثالثة فهي وثـائق أعـدت خصيـصاً المفتاحية المستنبطة آلياً، أما تلك المستخدمة في

لغرض البحث، وهي متوفرة على بعض مواقع الإنترنت المهتمة بموضوع الاسـتنباط الآلـي للكلمـات

 .المفتاحية

O

Abstract

The idea of Information Retrieval (IR) has been generated during the evolutionary

change in the way cultural, social or scientific information are stored from ink-on-

paper to digital libraries distributed on international networks. Typically this

information concerns material such as text, graphic documents (pictures, maps,

technical drawings etc.), sound and moving images. In attempt to make such huge

amounts of information efficiently retrievable, some techniques for Automatic

Term Extraction (ATE) are proposed. This Automatic procedure is considered the

cornerstone of a wide range of applications such as search engines, because

manual production of keywords is highly labor intensive. To ensure precise

information retrieval, the extracted keywords should accurately describe the

contents of their documents.

To improve this operation, researchers proposed many techniques for Automatic

Term Extraction (ATE) or Automatic Indexing, some used statistical techniques

and others used syntactic and probabilistic techniques. This thesis is a

comparative study aimed at leading to the use of statistical techniques including

four techniques: Term Frequency (TF), Inverse Document Frequency (IDF),

combined Term Frequency-Inverse Document Frequency (TFxIDF) and Term

Discrimination Value Model (TDVM). We have also developed a computational

tool for Automatic Term Extraction (ATEWB) to be used in the comparison; three

experiments are used for this purpose to specify the conditions in which each

technique is mostly efficient and/or accurate.

P

On the other hand, this thesis aims at improving statistical techniques efficiency

through the utilization of database engines to reduce the computations time of

their algorithms. As well as improving documents retrieval by caching them in

the database.

We have tested our model on a collection of aِbstracts of papers in the field of

automatic term extraction, containing keywords composed by their authors in the

first experiment, and a collection of documents prepared for test available on

some web sites concerned with IR.

Key Words1:

Term, Document, Word, Index, Technique, Class, Computation, Weight,

Collection, ATEWB, Step, Result, Extraction, Statistical, Method, Number,

Retrieval, Frequency, Database, Information, System, TF, Time, Performance,

Text, IDF, ATE, TFxIDF, Stemming, Automatic.

1 The above key words are extracted using ATEWB, which is developed in this thesis. 30 terms are

extracted using TF technique, 28 terms are relevant. They are ordered by weight in descending

order.

Chapter 1

1

1 Introduction

1.1 Overview

Information Retrieval (IR) involves retrieving desired information from textual,

graphical voice or video data. A typical IR request would be to find all documents

related to a particular subject. Before getting started, it is necessary to define some

basic concepts:

• A Term is a linguistic sign denoting a concept and referring to a reference

object [1]. It can also be defined as a word or expression of a specific

meaning in a specific field, which is concerned with some definitions,

standards or presentation. Terms may be suitable keywords but they are

not defined originally for information retrieval.

• Index term is a keyword used to describe the contents of a text and to

guide a user to the information [2].

• Index term corpus is a text collection that is linguistically analyzed, the

index terms are marked up manually [2].

• Automatic Term Extraction (ATE) is the operation of keywords

extraction of a specific domain from corpus using computers [3].

• Automatic indexing ATE is some times refereed to as automatic indexing

which is the process of producing the keywords (index terms) of a text

automatically [2].

• Retrieval is locating relevant documents to queries [4].

Chapter 1

2

• Information Retrieval IR is the recall of stored information [5].

In IR systems, documents are represented by some data (such as identifiers, titles,

authors, dates, abstracts, extracts, reviews, and keywords) called document

surrogates [5].

To retrieve documents, there must be an approach in which keywords are

extracted. These keywords may be used as the index of those documents, for

instance, in a search engine. Term extraction can be defined as the procedure of

extracting terms (index terms candidates) from a document or a collection of

documents in a specific domain. In the past, this operation was performed

manually, which is a labor intensive and time-consuming procedure.

Automatic Term Extraction (ATE) approaches came to solve this problem

automatically using computers. Some ATE approaches are referred to as statistical

techniques, some of these techniques are simple numerical algorithms such as

term frequency which counts how many each word occurs in a document, others

are very complicated such as term discrimination value in which millions of

vectors each containing millions of elements to be multiplied and summed many

times. Such techniques cannot be tested on normal computers, supercomputers are

needed for computations even if the simplest technique is used, because of huge

amount of textual data to be processed (tokenized, counted, divided by the

computed number of terms in their documents to be then weighted and sorted, and

the documents containing them to be retrieved). ATE and statistical techniques

will be discussed in details in Chapter 3.

Chapter 1

3

This means that statistical techniques need intensive computations and can utilize

scientific computing algorithms such as high performance computing and

algorithms, numerical simulation and numerical algorithms, and parallel and

distributed computing and algorithms to weight the terms and find which has the

highest weights (candidate index terms).

It seems to the reader for the first time that IR is not related to scientific

computing, even though, one of the main fields Scientific Computing concerns

with is Computational Information Science, which includes Data Mining and

algorithms, Information Retrieval (IR), Medical Informatics, Bioinformatics,

Genomics, and Biometrics, Computational Graphics, Text, Video, Multimedia

Mining and High Performance Information Processing and algorithms. Hence, IR

is much related to scientific computing.

On the other hand, Index terms are extracted using some techniques referred to as

syntactic analysis, which includes new algorithms of content analysis in a new

computational information science field called computational linguistics.

The list of index terms generated by ATE system can be used in many real-world

applications such as for example:

1. Search Engines: in which you enter a keyword or a sentence to search for a

file or files containing it on the web or in a directory on local disks on your

computer.

2. Digital Libraries: "libraries in which a significant proportion of the

resources are available in digital (machine-readable) format, as opposed to

Chapter 1

4

print or microform"2. They replicate many functions of traditional libraries

in digital media. They contain selected collection of texts with various

means of access. Indexing and abstracting are the first step of digitization

process.

3. Archiving Systems: like those used in mail systems to archive old e-mails,

keywords are used to find your e-mails quickly by subject, sender or

contents.

4. Thesaurus Use and Construction: in thesaurus we need term extraction

techniques to classify terms of the same meaning.

5. Content Analysis (Text Filters): content analysis is very important in

firewalls like those used in proxy servers to prevent access to some

unwanted web sites, anti-spam filter is another application that gets benefit

of term extraction, in which the contents of e-mails or received files are

analyzed to be checked against some contents, subjects, domain names or

senders. If any contains such keywords listed by the anti-spam they are

deleted or an alert appears to the recipient to take an action. It is also used

in anti-viruses and anti-spy-wares.

6. Document Management Systems DMS: Document management is used to

manage the life cycle of a document, from the creation through multiple

revisions and finally into long-term storage and record management

(archiving). DMS usually feature searching in repositories of documents

2 Anderson J. D. & Perez-Carballo J. 2005. Information Retrieval Design. Web site:

http://www.scils.rutgers.edu/~carballo/.

Chapter 1

5

both by externally applied information about the documents (e.g., user

who entered it, date of revision, or version relationship) and by content

(e.g., search on words contained within the document).

1.2 Motivation

To the best of my knowledge, and after reviewing related work, there was no

classification of ATE techniques, there was no comprehensive and clear

comparative study between statistical techniques and there was no computational

tool developed to evaluate the performance and efficiency of all techniques in one

package.

This thesis involves examination of the research issues in ATE general problem,

as well as the solutions proposed for several issues. The problem of Automatic

Term Extraction can be broken down into the following sub-problems:

1. Term extraction that includes:

a. Parsing.

b. Removing stop words.

c. Stemming.

2. Index Terms selection based on statistical techniques.

3. Performance improvement of statistical techniques

This is done by trying to answer the following questions:

1. What techniques or approaches are used in ATE? And what statistical

techniques represent among these techniques?

2. What are the famous statistical techniques used in ATE? What

methodology is used in each statistical technique?

Chapter 1

6

3. What are the main points of differences and similarities between these

techniques? What are the advantages and disadvantages of each one?

4. Which technique is considered the best in terms of performance and

accuracy? When to use each technique?

5. What are the main factors that affect their performance and accuracy?

How to improve performance and accuracy.

6. How to evaluate IR systems, and which measures may be used in

evaluation of effectiveness and efficiency?

1.3 ATEWB

A computational tool is required to make the comparison and evaluation of used

statistical techniques. There is no comprehensive and integrated tool that can be

used for this purpose. This is why we have developed a computational tool named

Automatic Term Extraction WorkBench (ATEWB) and used it to help us in our

comparison and evaluation. This ATE tool can be used for term extraction using

any of the above four statistical techniques for a collection of documents. Two

versions of ATEWB tool are developed, one under Microsoft windows and the

other under UNIX environment. A database engine is used to do all computations

instead of a programming language, which improves performance.

Experts can use ATEWB to help them in generating the index terms. Beginners

can use it to learn and experiment the different statistical techniques for automatic

term extraction.

Chapter 1

7

1.4 Contributions

The main focus of this thesis is to extract index terms or keywords automatically

from different types of electronic documents using different statistical techniques.

Due to the complexity of the problem we are tackling, there is a need for us to try

to focus on the process of extracting a single index term.

The major contribution of this research pertain the comparison of statistical

techniques and the evaluation of these techniques using ATEWB which is a

comprehensive computational tool that extracts the keywords and evaluates each

technique by computing the evaluation measures such as recall, precision and

noise. These measures are discussed in section 2.8.

A database engine is used in ATEWB for computations and vectors multiplication

is replaced by joining tables which improved the performance.

1.5 Outline of this Thesis

This thesis introduces different statistical techniques for automatic term extraction

and compares between them in six chapters.

The next chapter, Chapter 2, presents a literature review of related work. This is

followed by a discussion of Automatic Term Extraction (ATE) and ATE

Statistical Techniques in Chapter 3. Chapter 4 presents design issues and a

description of ATEWB extraction tool. Chapter 5 is a comparative study that

presents a comparison between statistical techniques and an evaluation of

ATEWB through three experiments followed by a discussion of results. Finally,

Chapter 6 presents conclusions and future work.

Chapter 1

8

Table 1.1 shows chapters’ summary. The chapters can be divided into two

categories; previous studies and our contribution.

Table 1.1: Chapters summary.

Chapter# Chapter Name Description
1 Introduction An introduction and description of what

to be studied in this thesis.
Previous Studies
2 Related Work Literature review of related work in

three areas: Natural Language
Processing, IR and ATE techniques and
finally Evaluation.

3 Automatic Term
Extraction

ATE concepts, stages and statistical
weighting techniques

Our Contribution
4 ATEWB description ATEWB system description and design

issues using UML notation and pseudo
code.

5 A Comparative Study Three experiments to compare between
techniques, results and evaluation of
ATEWB

6 Conclusions and Future
Work

Summary of conclusions and ATE
future work.

Chapter 2

9

2 Related Work

In computational linguistics we have recently witnessed a growth in the interest in

automatic treatment of terms, or linguistic units which characterize specialized

domains, especially when Natural Language Processing (NLP) systems are

moving from the development to the application stage [6].

2.1 Language and Information

Language is used for information communication. Information Retrieval is a sub-

discipline of information science. Information science has the following sub-

disciplines [2]:

• Informatics: is the quantitative study of information exchange.

• Information management: information or text retrieval systems evaluation

and quality.

• Information retrieval systems design.

• Information retrieval interaction.

2.2 Language Engineering

As we mentioned above, we are now in the information age, and information

becomes available from a huge amount of resources, this makes it increasingly

difficult for recipients to select and get what is useful. Language engineering

software provides the facilities to overcome the problems of information overload.

The techniques developed within language engineering allow the analysis of the

Chapter 2

10

content of information sources, either in a quick shallow sense, looking for

information of potential interest on which to focus, or, within a specific subject

area, to perform a complete analysis identifying specific information. In addition,

the selected information can then be summarized for presentation to the user who

can later decide to request the full information [2].

2.3 Communication of Information

Language is used for information communication. The following definitions have

been found in the Concise of Oxford dictionary (1976) and the Macquarie

dictionary (1981) [2]:

• Knowledge is what I know.

• Information is what we know (shared knowledge).

• Communication is the interchange or transfer of information by speech,

writing or signs.

• Data is any fact(s) that is matter of direct observation.

• A document is a group of recorded information arranged in physical form.

Figure 2.1 describes the different concepts of the communication process and the

overlap between them. In communication we transmit factual information. The

sender is the writer who expresses meanings into a text. The content of the text is

the subject and the main idea it contains, while the meaning of a word is the idea

it refers to and which can be explained by other words [2]. The receiver here is the

reader who interprets the meanings of the text and receives information and stores

what he understands as a new knowledge.

Chapter 2

11

Figure 2.1: Communication process – the different concepts [2].

2.4 Natural Language Processing

Natural Language Processing (NLP) means that if we can define plurals,

singulars, verbs, nouns, and other language patterns and describe them to a

computer, then we can teach a machine something of how we speak and

understand each other. This work is based on researches in linguistics and

cognitive science [7].

NLP research pursues the question of how we understand the meaning of a

sentence or a document. What are the keys we use to understand who did what to

whom, or when something happened, or what is fact and what is supposition or

prediction? While words (nouns, verbs, adjectives and adverbs) are the building

blocks of meaning, it is their relationship to each other that conveys the true

meaning of a text within the structure of a sentence, within a document, and

within the context of what we already know about the world [7].

People extract meanings from text or spoken language on at least seven levels, it

is not necessary that all NLP systems to use every level. These levels are [7]:

Text

Content of the message
Store of knowledge

Receives Information

Interprets
meanings Meanings

Receiver

Reader
Express meanings

Communicates
information

Sender

Writer

writes reads

Communication Transmission of factual information

Communication of information

=

Chapter 2

12

1. Phonetic Level: refers to the way the words are pronounced. This level is

not important for text retrieval systems. It is crucial to understanding in

spoken language and in voice recognition systems.

2. Morphological Level: the morpheme is a linguistics term for the smallest

piece of a word to carry meaning. Examples are word stems like child (the

stem for childlike, childish, children) or prefixes and suffixes like un-, or

-ation, or -s.

3. Lexical Level: can be used either for part-of-speech tagging or for the

utilization of lexicons from which the detailed features of individual terms

can be accessed. The lexical level is used in the construction of thesauri

and other similar resources, which are used as tools for manual indexers

and searchers. This way, we ensure that a common vocabulary is used in

selecting appropriate keywords.

4. Syntactic Level: the structure of a sentence conveys meanings and

relationships between words even if we don't know what they mean.

Position of a word can determine whether it is the subject or the object of

an action.

5. Semantic Level: examines words for their dictionary meaning and the

meaning derived from the context of the sentence. Most words have more

than one meaning but we can identify the best one from the rest of the

sentence.

Chapter 2

13

6. Discourse Level: uses document structure to extract additional meanings

for words. NLP uses this structure to understand the main and exact role of

a word or an expression in a document [8].

7. Pragmatic Level: in this level we use the information we know about the

world from outside the contents of the document to extract more

meanings. This is why we have to provide the IR system with this

information for higher effectiveness.

All these levels of understanding are combined within the structure of a sentence

to narrow the meanings of words as much as possible. Because each of these

levels of language understanding follows definable patterns, it is possible to inject

some language patterns into a computer system to be utilized in index terms

extraction [7].

2.4.1 NLP in Information Retrieval

Here we summarize the main steps of an information retrieval system. Any IR

system concerning text may consist of the following steps [7]:

1. Document Processing: includes tagging and information extraction from

each document and creating a list of words in alphabetical order and

removing stop-words. Text retrieval systems also create knowledge bases

with internal lexicons, semantic networks, or lists of phrases, synonyms,

and personal pronouns.

At this stage additional operations may be performed on words like

stemming, identification of part of speech, and the relationship of a word

Chapter 2

14

to the others within the sentence, the paragraph, or the document. Term

weights are computed at this stage and assigned to index terms.

2. Query Processing: when a query is entered, a statistical system identifies

the terms to search for and it may look for stems and singular and plural

forms. It may also assign weights to each term. A full NLP system tags all

the parts of speech, identifies objects, subjects, agents, verbs, and creates

an unambiguous representation of the query for the system to match

against its knowledge base.

3. Query Matching: the entered query is matched against the extracted index

terms in the knowledge base. Traditional systems match the query in the

same sequence it was entered by the searcher. Statistical systems use

Boolean combination, if your query is automatic indexing for example,

you get automatic indexing, automatic AND indexing, and automatic OR

indexing. A full NLP system may expand the query and add some

synonyms from its knowledge base to get foe instance automation of index

terms.

4. Ranking and Sorting: the list of documents matching the query are sorted

by date, field or by how relevant the document is to the query.

NLP can be added at any or all stages using any or all of the seven levels of

understanding. NLP is mostly used on the lower levels of understanding, and for

query interpretation only, parsing the query sentences (syntactic level) and

stemming (morphological level). NLP semantic level is rarely used in IR systems,

while phonetic level is necessary for audio and video retrieval systems [7].

Chapter 2

15

2.5 Information Retrieval

Information Retrieval (IR) is the process of retrieving the requested information

or data from a very huge amount of data. IR is a new field of scientific computing

that needs high performance or say supercomputers to be done automatically. This

enables you to get any piece of information you want from a large collection of

documents as fast as possible. Figure 2.2 illustrates a typical IR system by means

of a black box [9].

Figure 2.2: A Typical IR System [9]

The purpose of an information retrieval system is to find the most relevant

materials for the user while it eliminates the least relevant. We measure the ability

of the system to accomplish this feat as its precision and its recall [7]. Precision

and recall are measures of IR systems' performance, and they are better discussed

in section 2.8.

IR includes retrieval of text, voice, video, image, structured data, animation, etc.

Text retrieval is the most widespread among these types (text retrieval is

presented in section 2.6 in details), while the others are limited to some

researches. This is because it is too difficult to retrieve other types like images,

voice and video, in which retrieval is described as processing of these types so

Queries

Processor

Documents

Output

Feedback

Input

Chapter 2

16

that a query in search engines becomes for example (all image files containing a

dog). Till now there is no IR system that can effectively retrieve such information,

it just retrieves files containing the text (dog) in its name or contents. An example

of voice retrieval is to find (all audio files containing 'moon' in the speech). It is

obvious that this process is very complicated and needs voice or speech

recognition, analysis and then extraction of voiced keywords.

One of the latest researches in digital video and digital audio management was

proposed by Alan F. Smeaton [10]. Browsing audio and video contents is more

essential than it with text or image retrieval. This means that we cannot simply

take text-based information retrieval and apply it to video but we must rebuild the

whole system and integrate browsing and searching operations as well as possible.

2.5.1 Digital Audio Retrieval

Four approaches may be used in digital audio retrieval [10]:

• Word Spotting: given a pre-defined vocabulary of a number of words,

process the spoken audio to look for these words only, and use them as

indexing terms. By this restriction we can reduce complexity of speech

recognition to become manageable [11].

• Speaker Recognition: speaker-independent continuous speech

recognition to the audio recording of a dialog like that used in the Jabber

project at the University of Waterloo [10]. This shows that it is possible to

achieve effective retrieval from moderate processing of the audio signal.

• Phone-based Retrieval: instead of recognizing the whole words, it is

possible to recognize sub-words (phones). This approach has been

Chapter 2

17

implemented in indexing radio news in German language at ETH-Zurich

[12]. In this approach, the candidate phones are related to words through

some defined paths.

• Word-based Audio Retrieval: this approach applies continuous speech

recognition to spoken audio. This recognition must be speaker independent

to get the best results. It is used to support subsequent IR.

In spoken document track of the fifth Text REtrieval Conference (TREC-5), they

tested a collection of 100 hours of news broadcasts to find the relevant broadcasts

to a query. The tested systems of all groups in TREC-5 used speaker recognition

approach [10].

2.5.2 Digital Video Retrieval

To discuss video retrieval, it is necessary to define some video concepts. "Video is

basically a sequence of images displayed at a constant speed, normally 25 to 30

frames per second, with a synchronized audio track" [10]. It requires 720KB of

storage to display a single frame of TV quality video with 25 frames per second

for smooth motion. This means that it needs 18MB of storage for one second of a

video without compression. It is obvious that video utilizes a huge amount of

storage size and needs a high data transfer rate. To solve this problem it is

necessary to compress the video data using some compression algorithms. In this

way we can improve TV quality video manipulation to be displayed smoothly on

computer screens [10].

One of the most important video formats that use compression and video encoding

standards is MPEG family (MPEG-1 through MPEG-7). Motion compensation is

Chapter 2

18

a basic and necessary step in all video compression techniques, in which the

motion of adjacent video frames is recognized and only the differences between

adjacent frames are transmitted [10].

To understand the process of video retrieval, it is necessary to understand the

definition of a video and the used encoding algorithms. Video can be defined as a

group of successive variable-length single shots combined together in some way

to be played into a 2-D window (e.g. screen) continuously. The 2-dimensions are

the positions (x, y) and a third can be added which is time (t) [10].

Automatic video segmentation is a fundamental operation in video retrieval, in

which video is segmented into a list of shots using automatic Shot Boundary

Detection (SBD). Initial attempts at video segmentation were based on processing

the primitives in a video which are similar to the primitives in a single-frame

image, but with time added, namely color and associated histograms and their

within-frame distribution, texture, intensity/brightness, etc [10].

An experiment on video retrieval was run by Smeaton in Dublin City University

on 8 hours of broadcast TV including different program types. All shot boundaries

were marked up manually. From these 720,000 frames he took 5380 shot cuts and

779 fades or resolves as a ground truth to compare between different techniques.

Next step was to use an indexing approach to find a representative frame from

each shot that establish a list of keyframes. The simplest approach was to take the

middle or the first frame of a shot. Another approach is to represent a video

stream by a list of images where each image has an associated length of the clip

from which it was taken [10, 13].

Chapter 2

19

In Informedia project (A TV new application) [14], the approach was to

incorporate several techniques for content retrieval including:

• Speech recognition on the audio of the video using Sphinx recognizer.

• Segmenting the video.

• Object detection looking for VIP faces and text captions in the image.

• Caption and text extraction from frames using OCR.

• The user's text query is matched against text obtained from frames and

against a series of representative frames associated with keywords

extracted from dialog to be used as a query to find video clip like it.

2.6 Text Retrieval and Automatic Term Extraction (ATE)

A comparable research topic in the field of Information Retrieval (IR) is text

retrieval and its related approaches for automatic indexing or Automatic Term

(keyword) Extraction (ATE) [15]. Research in automatic indexing can be traced

back to the late 1950’s, when Luhn published a paper on extracting meaningful

elements from texts to be used in information retrieval [16].

Efficient text retrieval system depends on the efficiency of the techniques used to

extract index terms automatically from a collection of documents of a specific

domain that will be the base of IR systems. This operation is called automatic

term extraction . ATE and its techniques will be discussed in details in chapter 3.

"An automatic text retrieval system is designed to search a file of natural language

documents and retrieve certain stored items in response to queries submitted by a

Chapter 2

20

user" [17]. Typically, each document is described using certain words (keywords)

contained in the documents [17].

Document and text retrieval methods have been proved theoretically and tested on

many commercial retrieval systems [18]. Experiments on these methods show that

they work very well with full texts and large files, not only titles and abstracts.

The user’s request can be a word list, phrases, sentences or extended text [18]. In

this thesis the user’s request is confined on word list.

ATE is the most important stage of text retrieval and its applications like:

Document Management Systems (DMS) [19], Automatic Summarization,

Automatic Abstracting, Thesauri Construction [20, 21], Text Filters, Firewall

Systems and E-mail Management Systems [22], etc.

For instance DMS, which is "the automated control of electronic documents,

spread sheets and word processing documents within an organization from

creation to final archiving" [23], focuses on indexing and text retrieval as

important functions [23].

Indexing refers to the process of choosing the surrogates (keywords) which

represent the topic or content of documents [24]. A great number of studies have

appeared since 1950 on the quantitative approaches to single term extraction.

Some of them use linguistic information such as stop-word lists consisting of

function words, and many use quantitative measures [15].

2.6.1 Index Terms

Index terms can be considered as meta-information pointing to potential

information in documents. According to ANSI 1968 we can define Indexing as

Chapter 2

21

"the process of analyzing the informational content of records of knowledge and

expressing the informational content in the language of indexing system" [2, 25].

It involves [2, 25]:

1. Selecting indexable concepts in a document.

2. Expressing these concepts in the language of the indexing system (as

index entries), and an ordered list.

An indexing system is: "The set of prescribed procedures (manual and/or

machine) for organizing the contents of records of knowledge for purposes of

retrieval and dissemination" [2].

An index term points to and describes the contents of a document. For example

the main subjects and key contents of a book can be described and referred to by

using an index. Indexing can be done automatically or manually, and index terms

can be expressions obtained from the text or defined independently. These

expressions indicate what is being written about, and guide users or readers to

relevant information.

2.6.2 Index terms, topics, and terminological terms

Three kinds of index terms may be distinguished: topics, subtopics and passing

concepts and proper names. A topic is defined as ‘what is being written about in

the course of discourse’. A topic and an index term both describe the contents of a

document, but the point of view is different. For example a proper name which

may be an index may not be a topic of the text. While indexing, choose terms that

the reader might be interested in [2].

Chapter 2

22

The difference between terminology and index term is that terminology is

concerned with definition, standardization and presentation of terms, it may be

suitable index term, but it is not defined specially for IR. Terminological terms

must be as exact and universal as possible, while index terms describe the

contents of a certain document. Indexing languages also include passing concepts

and proper names; that is we can use proper names and concepts as index terms.

Figure 2.3 shows the overlap of terminological terms, topics and index terms [2].

It is also necessary to distinguish between words, terms and concepts [27].

Figure 2.3: Overlap of terminological terms, topics and index terms [2]

2.6.3 Index Term Corpus

Index term corpus is a specific domain collection of documents or text for test

purpose in automatic indexing. A corpus is a linguistically analyzed text

collection, where index terms are manually marked up for each document page

using previously generated book indexes [2].

It can also be defined as "a large body of natural language text used for

accumulating statistics on natural language text" [2]. Corpora often include extra

information such as a tag for each word to indicate its part-of-speech, and perhaps

 TopicsTerms

Index Terms

Chapter 2

23

the parse tree for each sentence. Part-of-speech tagging is labeling each word in

each sentence with its part-of-speech [2].

2.6.4 Manual Indexing

In manual indexing, indexers specify which keywords are suitable as index terms

in a document based on controlled vocabulary "an established list of standardized

terminology for use in indexing and retrieval of information to ensure that a

subject will be described using the same term each time it is indexed" [28], this

procedure is long and of significant cost. When an indexer starts the indexing

procedure he firstly asks himself what is the document about and in what is the

reader interested. The procedure of indexing starts with choosing suitable

keywords via content analysis, assigning content indicators, adding location

indicators, assembling the resulting entries, and finally, choosing the way of

displaying the final index [2]:

Content indicators like titles, subtitles, and abstracts, in addition to first and last

sentences give good indicators of subject contents. Then the list of derived

concepts is converted into the controlled vocabulary of the indexing language and

a thesaurus is used to get the final index terms. There are no universal indexing

rules and there are many indexing guides, but a good indexer follows one guide

for consistency [2].

It is necessary to define an appropriate depth of indexing, that is, the optimal

number of topics covered in the index. Users may miss something if too few

topics are covered and they may have to read irrelevant material if too many

topics are covered [2].

Chapter 2

24

2.6.5 Comparison of Manual and Automatic Indexing

The main steps of automatic indexing are the same as manual indexing, except the

use of computers to be performed automatically instead of manual indexers. Using

a NASA database consisting of documents from Scientific and Technical

Aerospace Reports (STAR) and International Aerospace Abstracts (IAA),

automatic indexing was compared with manual indexing in the mid-nineteen

seventies of the last century using different automatic and manual systems. Recall

and precision, which are the evaluation measures for IR systems, were used in the

comparison; these measures are discussed in details in section 2.8. The following

indexing systems were compared [17]:

1. Automatic indexing system 1: using natural language with machine search

of titles and abstracts.

2. Automatic indexing system 2: using natural language and thesaurus.

3. Manual indexing system 1: indexing documents with controlled language.

4. Manual indexing system 2: controlled indexing using natural language

term extraction.

The results of this comparison show that the automatic indexing system 1

produced the best average recall and a high precision. The manual indexing

system 1 produced a better precision than the automatic system 1, but a worse

recall. Figure 2.4 illustrates the points of NASA system evaluation and the curves

representing the performance of Medlars manual indexing test, and the STAIRS

system indication [17]. We conclude that automatic indexing proved at least equal

or we can say better results than manual indexing [17].

Chapter 2

25

Another comparison of the performance of the Medlars manual indexing system

with the automatic indexing system 2 based on abstract searching with thesaurus

has shown that the two systems give approximately the same results [30].

Figure 2.4: Comparison of Manual with Automatic Indexing [17]

In a study of automatic (single term) indexing systems with natural language and

abstract search by Aslib and Cranfield to evaluate their performance, a

comparison between automatic (single term) indexing systems and different

manual (controlled term) indexing systems was conducted [29]. The two curves of

Cranfield study are illustrated figure 2.4. From the curves it is clear that the

automatic (single-term) indexing gave almost better results than the manual

(controlled-term) indexing [17].

From this comparison we conclude that automatic indexing provide almost the

same results if not better than manual indexing. On the other hand, automatic

indexing dramatically reduces time and efforts needed in manual indexing.

Chapter 2

26

2.7 ATE approaches

In ATE, a weighting approach is needed to weight the extracted words, to judge,

which may be an index term. Many studies have been published since 1950’s

proposing different approaches, each has its advantages and disadvantages.

As shown in Figure 2.5, ATE approaches may be categorized into four main

categories: Statistical Techniques, Neural Networks and Machine Learning,

Probabilistic Techniques, and Syntactic Analysis.

2.7.1 Statistical Techniques

Automatic term extraction statistical techniques are an example of these

approaches. They depend on the use of simple terms to index both request and

document texts; on term weighting utilizing statistical information about

occurrences of a term; on scoring for request-document matching, and then using

these weights to obtain a ranked search output; and lastly, on relevance feedback

in iterative searching to modify request weights or term sets [18].

Luhn (1957) was the first who used this approach [16]. Some other researchers

proposed approaches based on the existence and non-existence of a word in a

document, while some proposed approaches based on frequency [15].

Chapter 2

27

Figure 2.5: ATE-Techniques Classification

The two most straight forward measures for the weights of a word in a document

are: term existence and term frequency. The former gives 1 to all the words that

appear in the document, while the latter gives the number of occurrences of the

word in the document as its weight [15].

A famous weighting measure called Inverse Document Frequency (IDF) is based

on word existence or non-existence in the documents [31]. Salton and Yang

Syntactic
Analysis

ATE

Techniques

Statistical

Neural Networks
& Machine
Learning

Probabilistic

Term Frequency TF

Inverse Document Frequency IDF

Combined TFxIDF

Term Discrimination Value TDV

Self-Organizing Feature Map (SOFM)

Probabilistic Relevance Models

Hopfield Net

Semantic Networks

Recursive Transition Network (RTN)

Augmented Transition Network (ATN)

Uncertain Inference Models

Chapter 2

28

(1973) present the measure, in which IDF weight is multiplied by the frequency of

the word in the document [32]. The result weight is a combination of TF and IDF

to generate a new approach called TFxIDF.

On 1975 Salton Proposed Term Discrimination Value (TDV) as a new term-

weighting technique and document similarity measure. The Theory is essentially

that the best terms for indexing are those that highlight differences among

documents in a collection [33, 15]. Salton defined the discrimination value of an

index term as an estimate of an individual term’s contribution to the density of a

document space in systems based on the vector-processing model [6].

On 1980 M. F. Porter proposed an algorithm for suffix stripping claiming that it

improves text retrieval [34]. He said “Removing suffixes by automatic means is

an operation which is useful in the field of information retrieval. We can say that,

a document may be represented by a vector of words or terms. Terms with a

common stem will usually have similar meanings.” For example:

Connect, Connected, Connecting, Connection, and Connections.

Frequently, the performance of an IR system is improved if term groups such as

this are unified into a single term. This is done by removal of suffixes such as -ed,

-ing, -ion, -ions to leave the single term Connect. In addition, suffix stripping

reduces the total number of terms in the IR system, and hence reduces the size and

complexity of the data in the system, which is always useful [34].

This thesis establishes a comparison between the most frequently used

quantitative statistical techniques proposed above to find which is the most

effective and efficient approach. These techniques are:

Chapter 2

29

1. Term Frequency (TF).

2. Inverse Document Frequency (IDF).

3. Term Frequency combined with Inverse Document Frequency (TFxIDF).

4. Term Discrimination Value Model (TDV or TDVM).

Different techniques are discussed along with different examples. It is shown how

an index term can be extracted using different techniques. Chapter 3 will describe

these techniques in more details.

2.7.2 Neural Networks and Machine learning

Neural Network is an important component in Artificial Intelligence (AI). It is

used in many fields like speech and image recognition, machine learning and IR.

"A neural network model (or neural model) refers to a connectionist model

simulating the biophysical information processing which occurs in the nervous

system" [37].

If viewed as an adaptive machine, a neural network is defined as a parallel

distributed processor consists of simple processing units, which has a natural bias

to store knowledge of previous experiments to make it available for use later [37].

It is similar to the brain in learning and storing knowledge by interneuron

connection strength.

Figure 2.4 illustrates a simple neural network [35]. Haykin refers that the neuronal

model consists of three basic elements [37]:

• A set of connecting links (synapses), each link has its own weight or

strength.

Chapter 2

30

• An adder for summing the input signals with their respective weights of

synapses of the neuron.

• An activation function that limits the amplitude of the output of a neuron.

Figure 2.6: A simple Neural Network [35]

Three types of activation functions are distiguished: 1) threshold function; 2)

Piecewise-linear function, and 3) sigmoid function. The sigmoid function, whose

graph is s-shaped graph, is the most common activation function.

Neural network models have the following advantages over traditional IR models

[36, 37]:

1. They are self-processing. The nodes and links in a neural network have

intelligent behavior. No external active agent operates on them.

2. Neural network models exhibit global system behaviors. Concurrent local

interactions on different components made them potential for parallel

processing.

3. Resistance to noise.

Neural network architectures (topologies) can be divided into three classes [37]:

1. Single-layer perceptrons (feed forward networks)

2. Multi-layer perceptrons (feed forward networks)

Chapter 2

31

3. Recurrent networks with at least one feedback loop.

2.7.2.1 Learning Process in Neural Networks

The ability of neural nets to learn from input data with or without a teacher has

been a central issue for researchers developing neural networks. Learning rules

used in nets learning can be categorized into five groups [37]:

1. Error-correction learning

2. Memory-base learning

3. Hebbian learning

4. Competitive learning

5. Boltzmann memory-based learning

On the other hand, learning processes are divided into three groups [36, 37]:

1. Supervised learning: weights are adjusted by a teacher.

2. Unsupervised learning (self-organized learning): no external indication is

given to the network such as the correct responses and what of the

generated responses are right or wrong.

3. Reinforcement learning: it is somewhere between supervised learning, in

which the desired output is provided, and unsupervised learning, in which

the system gets no feedback.

2.7.2.2 Application of Neural Network Models in IR

Neural network models can be used for clustering and keyword classification in

different domains for more powerful IR systems. Applying connectionist

approaches in IR might produce IR systems that will be able to [37]:

Chapter 2

32

• Recall memories in spite of failures in individual memory units.

• Modify stored information when new inputs are entered by the user.

• Retrieve nearest data when no exact data match exists.

• Associatively recall information in spite of input missing or noise.

• Categorize information by their associative patterns.

Let's review the application of some neural network models in IR systems.

2.7.2.2.1 The application of Self-Organizing Feature Map (SOFM)

SOFM was introduced by Kohonen 1988 [38]. A simple Kohonen net consists of

two layers, an input layer and a Kohonen (output) layer. These two layers are fully

connected. Each input layer neuron has a feed-forward connection to each output

layer neuron as illustrated in figure 2.7. From this simple net a complicated

SOFM can be constructed [37].

SOFM uses competitive (unsupervised) learning and works in 2 steps. First, it

selects the unit whose connection weight vector is closest to the current input

vector as the winning unit. After a winning neighborhood is selected, the

connection vectors to the units whose output values are positive are rotated toward

the input vector. Inputs to the Kohonen (output) layer can be calculated by the dot

product between the neuron weight vector and the input vector. The neuron with

the biggest dot product is the winning output layer neuron [37].

Chapter 2

33

Figure 2.7: Kohonen Model [37]

Kohonen has shown that his self-organizing feature map "is able to represent

rather complicated hierarchical relations of high-dimensional space in a two-

dimensional display [38].” He used his feature map and conventional hierarchical

clustering analysis to process a matrix of 32 documents and five indexing terms of

artificial data. He obtained similar minimal spanning trees in both methods. In

another example he showed that the self-organizing mapping could also display,

two dimensionally, topological and similarity relations between phonemes from

continuous speech. He had concluded that "the self-organized mappings might be

used to visualize topologies and hierarchical structures of high-dimensional

pattern spaces” [38]. Document space is such a high-dimensional space.

On 1997, Hanato used SOFM in an information organizer for effective clustering

and similarity-based retrieval of text and video. He showed that word-frequency

based algorithms of SOFM seem suitable to cluster documents and generate a

global overview map, while algorithms based on Salton's measurements seem

more effective to perceive document's distinction, which is useful to IR [37].

Chapter 2

34

The digital library initiative (DLI) project at Illinois University uses SOFM to

classify and map the category of text documents and to map the category of the

texture of images [39].

The SOFM algorithm for textual classification is summarized below [40]:

1. Initialization: use the most frequently occurring N terms as the input

vector and create a 2-dimensional map of M output nodes. Initialize the

weights ijw to small random values.

2. Present the documents in order: each document is described as an input

vector of N coordinates. If the document has the corresponding term set a

coordinate to 1, if there is no such term set the coordinate to 0. Each

document presentation is repeated several times.

3. Compute distance to all nodes: the Euclidean distance jd between the

input vector and each output node j is Computed using the formula 2.1:

() ()()21

0

N
j i iji

d x t w t−

=
= −∑ (2.1)

where ()ix t may be 1 or 0 depending on the presence of the ith term in

the document presented at time t. ijw is the vector which represents

position of the map node j in the document vector space, or the weight

from input node i to output node j

4. Select winning node *j and update weights to node *j and its neighbors:

Select winning node *j , which produces minimum distance jd . Update

Chapter 2

35

weights to nodes *j and its neighbors to reduce the distances between

them and the input vector ()ix t as in formula 2.2:

() () () () ()()1 1ij ij i ijw t w t h t x t w t+ = + + − (2.2)

After such updates, nodes in the neighborhood of *j become more similar

to the input vector ()ix t .

 ()h t is an error-adjusting coefficient ()()0 1h t< < that decreases

over time.

5. Label regions in map: After training the network through repeated

presentations of all documents, each output node is assigned a term by

choosing the one corresponding to the winning term (the term with largest

weight). Merge neighboring nodes, which contain the same winning terms,

to form a concept/topic region (group). Again, each document is submitted

as input to the trained network and assigned a particular concept in the

map. We get a map that represents regions of important terms/concepts

with the documents assigned to them. The conceptually similar concept

regions appear in the same neighborhood. On the other hand, similar

documents are assigned into the same or similar concepts [40].

2.7.2.2.2 The application of Hopfield Net

Hopfield net was proposed as a content addressable memory and used for various

classification tasks and global optimization.

Chapter 2

36

Chen and his colleagues 1993 proposed a variant Hopfield net to create a network

of related keywords. Asymmetric similarity function was used to produce thesauri

for different domain-specific databases automatically. That is to be integrated

with thesauri produced manually [37].

The Hopfield has been adapted by Chung and her colleagues for IR concept

assigner. The main steps of the adapted Hopfield are [41]:

1. Assigning weights of the links: the concepts in the Concept space

represent the net nodes, and synaptic weights between nodes are the

similarities computed based on the co-occurrence analysis.

2. Initialization: an initial set of concepts (noun phrases) extracted from a

document are the input patterns.

3. Activation: activate nodes in parallel and combine activated values from

neighboring nodes for each single node.

4. Convergence: the process is repeated until reaching a stable state, in which

there is no significant change in output state between two time steps.

2.7.2.2.3 The application of MLP and Semantic Networks

It is difficult to distinguish between the applications of MLP and the applications

of semantic networks with spreading activation models in IR. That is because they

have similar feed-forward structure. MLP was used in developing a method for

term association by Wong and his colleagues on 1993 [37]. The results indicate

the usefulness of neural networks in adaptive IR systems design.

Kwok represented an IR system using 3-layer MLP network (queries connected to

index terms connected to documents) [37]. He attempted to reformulate the

Chapter 2

37

probabilistic model of IR with single terms as document components. This system

optimally ranks the collection documents with respect to a query. The

discrimination function of this 3-layer network is based on IDF with learning

algorithms exist. It is proved that activation using network provides better results

than that in traditional IDF weighting [37].

Peece (1981) and Cohen & Kheldsen (1987) used semantic networks with

spreading activation models [37].

There are many other systems using neural networks for IR but they can not be

mentioned here, this is just a review of some neural network based IR systems.

2.7.3 Probabilistic Models

Probabilistic modeling is "the use of a model that ranks documents in decreasing

order of their evaluated probability of relevance to a user's information need or

query" [42], or the ratio of the documents' probability of being relevant to a query

to the probability of their being irrelevant [43], refer to formula 2.3.

() ()
() ()

| 1 |
log

| 1 |
i i

i
i i

P x rel P x irrel
w

P x irrel P x rel
−⎡ ⎤⎣ ⎦=
−⎡ ⎤⎣ ⎦

 (2.3)

All documents are ranked in decreasing order according to the weight iw in

equation (2.3), assuming that ix are individual terms that occur independently of

each other in the relevant and irrelevant documents in the collection. ()|iP x rel

is the probability of a document to be relevant and ()|iP x irrel is the

probability of a document to be irrelevant [43].

Chapter 2

38

Many researchers have made use of formal theories of probability and statistics in

order to evaluate or estimate those probabilities of relevance. One of these

attempts was the vector space model proposed by Salton [42], in which

documents are ranked according to similarity with queries. A measure of

similarity can not be considered as probability. On the other hand, similarity

models lack the theoretical soundness of probabilistic models.

The first attempt to develop a probabilistic theory of retrieval was introduced by

Maron and Kuhns on 1960 and then by Miller on 1971 [42]. There are already

several operational probabilistic or semi-probabilistic IR systems. The obstacle in

these models is to find a method to evaluate the probability of relevance, which is

theoretically sound and computationally efficient. To simplify the problem, some

assumptions like event independence are made in some models. For example

"binary independence indexing model" and "binary independence retrieval model"

used such assumptions [42].

When dependencies are taken into account, the results are worst than when

simplifying assumptions were used. Moreover, higher computations are needed

with dependencies [42].

Some approaches involved statistical techniques with pattern recognition and

regression analysis [42]. These approaches do not make use of independence

assumptions. The only probabilistic assumptions involved are those implicit in the

statistical regression theory itself.

Other models are proposed, some based on Bayesian inference theory taking into

account conditional dependencies. Some models are based upon non-classical

Chapter 2

39

logic, or integrating logic with NLP. All these models are under development and

validity is to be confirmed.

After this review we can distinguish two classes of probabilistic models:

1. Probabilistic Relevance Models.

2. Uncertain Inference Models.

2.7.4 Syntactic Analysis

Syntactic analysis uses NLP techniques and linguistic algorithms. It is concerned

with term phrases instead of single terms and the relation between words in each

sentence. Inverted file is efficiently used in syntactic analysis. Inverted file inverts

free text search terms into narrower units than documents or even paragraphs.

Boolean operators like AND are used in inversion on the sentence level to link

terms within sentence boundaries [44].

Work in the linguistic approach for IR started on 1966 in SMART system by

Salton [45], followed by LEADER system by Hillman and Kasarda [44]. After

that, NLP techniques have been used in developing other systems like: SPIRIT

system by Andreewsky 1977, then on 1983 Dillon and McDonald proposed

FASIT system [44], another system was developed by Doszkocs on 1982 named

CITE, then SIRE and CONTEXT systems by Koll et al. on 1984 and Contahal on

1985 respectively [44]. On 1986 and 1987 the interest in syntactic analysis

increased dramatically. This includes Belgonov, Berrut & Palmer, Chiamarella

with an information retrieval system that combines linguistics and statistics,

Defude works on query analysis, Jones/Bell, Smeaton, Walker with techniques for

large scale applications which need some sort of syntactic processing all on 1986,

Chapter 2

40

then Biswas with a system using natural language interface, Das-Gupta used

natural language conjunction analysis, Liddy used anaphoric problems, and stem

dictionary expert system by Hyams all on 1987 [44]. Till now for example,

Thinking Machines Corporation and Brattle Research Corporation are offering

NLP tools and sometimes combined with other techniques for IR.

Syntactic analysis concentrates on noun phrases which are compound terms or a

group of syntactically related terms combined together to give a new meaning

different from the meaning of each term alone. Special algorithms are used for

noun phrase recognition to isolate the terms [44]. In the following sub-sections

(2.7.4.1- 2.7.4.4), we are going to review the stages of syntactic analysis systems.

2.7.4.1 Pre-search and Post-search

Pre-search is used instead of inverted file, in which the system combines the

meaningful terms for an OR search. The result may be documents containing one

or more search terms. Post-search ranks the retrieved documents which contain

more than one search term according to the phrase or sub-phrase correspondence

of the query based on the number of retrieved terms and the hierarchical structure

of the links between them [44].

2.7.4.2 Syntactic Analysis

Syntactic analysis involves using some syntactic rules for free text analysis called

dependency structure rules. After isolation of noun phrases, one or more of 45

syntactic rules may be applied to generate the dependency structure of noun

phrases. For example, head-modifier relation between adjectives and prepositional

Chapter 2

41

phrases of the sentence "syntactic analysis of index terms in documents" is shown

in figure 2.8 [44].

Figure 2.8: Head-modifier relations of "syntactic analysis of index terms"

The inverted file may contain all combinations, which may seem longer like

"syntactic" "analysis" "term" "index" "document" "syntactic analysis" "analysis of

term" "index term" "term in document" "syntactic analysis of term" "analysis of

index term" "analysis of term in document" "index term in document" "syntactic

analysis of index term" "syntactic analysis of term in document" and finally

"syntactic analysis of index term in document".

Categorical information is needed for syntactic analysis, which is a group of word

lists containing negative or positive representatives for word categories. These

lists include function words, verbs, negative lists for gerund recognition, positive

and negative lists for adjective recognition, and list of words ending with s in the

stem. Categorical information effectively reduces the number of inverted file

entries, which speeds up the system [44].

 analysis

syntactic term

 index document

Chapter 2

42

2.7.4.3 Phrase Matching

If the query for example is "index term" it searches in the inverted file for the

combinations "index" "term" "index term". In other words, it goes down paths

through the dependency trees, thus yielding tree or sub-tree or tree and sub-tree

overlaps of structures between query and documents. Documents containing

"index term" sub-tree in the above example have higher rank [44].

2.7.4.4 Syntactic Analysis Evaluation

Evaluation includes ranking correctness, which was proved that there is

practically no means to arrive an error rate under 5% using syntactical methods

only. Ranking correctness depends to a high degree on how good syntactic

analysis is. On the other hand, recall and precision measures for IR evaluation

may be used in syntactic analysis. Evaluation of IR systems will be discussed in

the next section 2.8 [44]. The most popular techniques that use syntactic analysis

are:

1. Augmented Transition Network (ATN).

2. Recursive Transition Network (RTN).

2.8 IR and ATE Evaluation

The criteria of IR systems evaluation include retrieval accuracy, processing time,

cost-effectiveness, user satisfaction, effort required to learn the system, system

utility, etc [47]. Although some researches use multiple criteria [46], majority of

evaluation is conducted based on retrieval accuracy [47]. It is accepted to get

moderate accuracy in current IR systems [7].

Chapter 2

43

Kent et al [98] proposed the criterion of relevance and the measures of precision

and recall to evaluation IR systems. "Precision is the ratio of the number of

relevant documents retrieved to all retrieved documents. Recall is the ratio of the

number of relevant documents retrieved to the number of all relevant documents

in the search space" [47]. Precision and recall are the most common measures

used to evaluate the effectiveness of IR systems [47].

In other words, Recall is the proportion of relevant documents retrieved from the

total number of relevant documents in the database, and precision is proportion of

relevant documents retrieved from the total number of retrieved documents [6].

They are closely correlated with how will a keyword represents documents in

which it is a surrogate, and how well it can discriminate the documents from

others. Hence the degree of representation and discrimination are the most

important characteristics of index terms [15]. In principle, a search should achieve

high recall by retrieving almost everything that is relevant, while at the same time

maintaining high precision by rejecting a large proportion of extraneous items

[17]. In this thesis we measure two types of performance:

1. Processing Performance is measured by utilization of CPU time and

memory size during the process, and by time it takes from the beginning of

parsing till getting the table of results for each technique, including stop

words removal, stemming, computations and updating database.

2. Retrieval performance and accuracy of systems which is measured by five

main measures; all of these measures are applied on document retrieval

[6]. These measures can be adapted to be applied on index terms in term

Chapter 2

44

extraction. Table 2.1 can be used to compute them. These measures

include [48]:

Table 2.1: ATE evaluation measures.
No. of Terms Relevant (Rel) Irrelevant (Nrel) Total

Retrieved (Ret) A=(RetRel) B=(RetNrel)
A+B

(all ret. terms)

Not Retrieved

(Nret)
C=(NretRel) D=(NretNrel)

C+D

(all not ret. terms)

Total
A+C

(all relevant terms)

B+D

(all not rel. terms)

A+B+C+D

(all terms.)

• Recall (R): measures the ability of the user/system to extract the

available relevant index terms.

AR
A C

=
+

 (2.4)

• Precision (P): measures the ability of the user/system to extract only

relevant index terms.

AP
A B

=
+

 (2.5)

• Noise (N): is the proportion of irrelevant index terms found in the set

of retrieved terms.

BN
A B

=
+

 (2.6)

• Fallout (F): measures the probability that an irrelevant index term was

retrieved.

Chapter 2

45

BF
B D

=
+

 (2.7)

• Generality (G): is the proportion of the index terms in the system that

the query addresses.

() ()
A CG

A C B D
+

=
+ + +

 (2.8)

On the other hand, Effectiveness (E) compares between Recall and Precision to

get the best performance. The following formula was proposed by Van Rijsbergen

to measure IR systems performance [9, 47].

()2

2

1
1

PR
E

P R
β

β
+

= −
+

 (2.9)

Where P and R are precision and recall, and β is a parameter reflecting the relative

importance of recall to precision defined by the user. In this thesis we used mainly

the first three measures; recall, precision, and noise, which are sufficient IR

measures for evaluation.

Statistical tools like SPSS also may be used with its famous tests to compare the

results of different techniques. It measures weight average, standard deviation,

correlation coefficient between different variables affecting the result. This type of

analysis can be used to check to which extent the results obtained from each

statistical technique are related or different. The problem of such tools that they

are not comprehensive tools, you need to get the results of ATE system and enter

them manually to the tool, which is not efficient. This is why we have built our

own evaluation module in ATEWB.

Chapter 2

46

2.9 Summary

In this chapter, we have discussed the literature review of information retrieval,

automatic term extraction and related work. We have discussed language

information and communication, natural language processing in IR, information

retrieval fields including text, audio and video and then automatic term extraction

(ATE). In ATE we have discussed different techniques or approaches that have

been used for keywords extraction, which includes statistical techniques,

probabilistic models, neural networks models such as self organizing feature map

(SOFM), and syntactic analysis. Finally we have discussed IR evaluation metrics

that are used to compare between different IR techniques in terms of effectiveness

and performance.

In chapter 3 we discuss the different statistical techniques used for term weighting

and how these weights are computed to decide which term could be used as an

index term (keyword).

Chapter 3

47

3 Automatic Term Extraction (ATE)

Several methods have been proposed for the extraction and constitution of a list of

index terms from a specific domain. To build a monolingual terminology bank,

different software packages have been implemented, which provide a list of likely

terminological units, based on linguistic specifications. Different statistical

methods, making effective use of recently available large-scale machine-readable

corpora, have been tested to extract collocations. Another approach combines both

linguistic and statistical knowledge in order to establish terms.

Automatic Term Extraction (ATE) is the extraction of index terms from special

language corpora with the use of computer. Its applications include specialized

dictionary construction, human and machine translation, indexing in books and

digital libraries, hypertext linking, text categorization and indexing.

ATE and its related computations can be applied using one or more algorithms or

techniques. In this thesis, we discuss statistical analysis techniques.

3.1 ATE Stages

ATE is the process of extracting words or phrases of a document, which are

candidates to be index terms computationally. ATE is sometimes referred to as

automatic indexing. Basic ATE the same as Automatic Indexing process consists

of four stages:

• Text parsing and tokenizing: reading the words of text files or

documents in a collection or a corpus.

Chapter 3

48

• Stop words removal: removal of high frequency words that don’t affect

the meaning of a sentence, like prepositions, pronouns, conjunctions and

other function words that do not convey much meaning.

• Stemming: It is used in IR to conflate morphological variants. It consists

of rules and/or dictionaries used to remove prefixes and suffixes of words

in a collection of documents.

• Weighting of words: using an algorithm to weight the remaining words,

this weight will be used to find if a word is suitable to be an index term.

Indexing or ATE program decides which words, phrases or other features to use

from the text of documents. This increases the speed of doing that manually

thousands of times. The basic issue of ATE is to answer the question “Which

terms should be used to index (describe) a document?”.

3.2 Single Term vs. Phrase Extraction

During term extraction process, two types of index terms arise: single terms and

compound terms (phrases). A single term consists of one word like car, door, and

approve etc., whereas a compound term or a phrase consists of two or more words

like Dead Sea, Smart Board, and Information Retrieval etc.

As for single terms, statistical methods have been used to extract phrases; this

includes finding all word pairs that occur more than n times in a collection or

using part-of-speech tagger to identify simple noun phrases. Phrases have impact

on both efficiency and effectiveness. For example, finding documents containing

Chapter 3

49

the phrase “Dead Sea” is better than finding both words. Effectiveness depends on

retrieval model in phrase extraction.

Phrase extraction process goes through three main steps [49]:

• Tokenization: The goal of the tokenization process is to determine

sentence boundaries, and to separate the text into a sequence of single

tokens (words) by removing extraneous punctuation. Single spaces may be

used to delimit tokens.

• Part-of-Speech Tagging: The tagger is divided into two main phases:

- Lexical Analysis: involves specifying part of speech (noun, verb, or

adjective) of each word in using lexicon. Each word is marked up with

its part of speech listed for it in the lexicon. If a word does not appear

in the lexicon, the tagger will mark it as an unknown noun.

- Contextual Analysis: further text processing to ensure that the part-of-

speech tags are disambiguated, using several contextual rules.

• Noun Phrase Identification: the tagger rules are applied to the tagged

words using a sliding window of maximum number of words that form a

phrase. As the window slides over the words of the text, the noun phrase

patterns are applied to the window contents. Then the longest matching

rule is used to obtain the best noun phrase. Once a noun phrase is located,

the window slides to the next word following the phrase and starts reading

the contents of a new window.

Chapter 3

50

3.3 ATE Statistical Techniques

In chapter two, the definition and steps of ATE process have been discussed. Four

statistical techniques have been mentioned, by which the weight of a term is

computed to judge if it is suitable to be index term candidate. This chapter

describes the weight computations of each technique.

Each technique has its own algorithm. Each has its own advantages and

disadvantages in terms of efficiency, effectiveness, and cost. In addition to

statistical techniques algorithms, Porter’s stemming algorithm for suffix stripping

is described here.

Statistical techniques that are used in this thesis for automatic text analysis depend

on frequency and rank of words or documents. We may use frequency data to

extract words and sentences to represent a document, as Luhn assumed [50].

If we plot the relation between the frequency of words in a given text f and their

rank order r as shown in figure 3.1 [18]. The result is a hyperbolic function which

represents Zipf’s law. This law considers the product of the frequency of words in

a given text and their rank order almost constant [51].

As illustrated in figure 3.1, there will be an upper cut-off and a lower cut-off,

significant words are the words between the two cut-offs. The words outside the

cut-offs are considered less important and can not be used as index terms. Those

words below the lower cut-off are considered rare, while those above the upper

cut-off are considered familiar. The most significant words (content

discriminators) are located in the center of the natural distribution curve between

the two cut-offs to reach the peak value and fall down in both directions to reach

Chapter 3

51

approximately zero at the cut-off points as shown in figure 3.1. Depending on

some experiments and by trial and error, the cut-off points are created [50].

Figure 3.1: A plot of hyperbolic curve relating the frequency and rank [52].

For easier computations, Salton represented each document as a vector in an N-

dimensional vector space (collection of documents) as illustrated in figure 3.2.

The dimensions of the vector space (N) equals to the total number of distinct

terms of the collection. Each document is represented by a vector of weights of

the terms it consists of.

Figure 3.2: Document Vector Space

1 .0

0 .8

0 .6

0 .4

0 .2

0 .80 .60 .40 .20 1 .0

d 2

d 1

q

1α

2α

T erm B

T erm A

q = (0 .4 ,0 .8)
d 1 = (0 .8 ,0 .3)
d 2 = (0 .2 ,0 .7)

1 .0

0 .8

0 .6

0 .4

0 .2

0 .80 .60 .40 .20 1 .0

d 2

d 1

q

1α

2α

T erm B

T erm A

q = (0 .4 ,0 .8)
d 1 = (0 .8 ,0 .3)
d 2 = (0 .2 ,0 .7)

Chapter 3

52

Figure 3.2 shows a 2-dimensional vector space, term A and Term B. In document

d1 for instance, the weight of Term A is 0.8 and Term B is 0.3 which produces the

vector (0.8, 0.3). The query also is presented as a document in the vector space to

be compared with documents. The similarity is checked by measuring the cosine

of the angle between the query and other documents. To check the similarity

between the query q and the document d1 for instance, find the cosine of the angle

α1, as it approaches to 1 as they are more similar. If the cosine is 1, then the query

and the document are exactly the same.

Let’s define some notations that are used in the computations of this thesis:

Document space: { }1 2, ,..., ,...jD d d d=

D is the document space that contains all documents in the collection, and each

document is denoted jd .

The vocabulary or the set of all the different words or word types iw appearing

in D , is denoted by DW . Thus: { }1 2, ,..., ,...D iW w w w=

jdW is the vocabulary of a document jd , a word iw with respect to a specific

document jd is denoted by ijw .

The following three functions are defined:

 ()n S , is the number of elements of a set S.

 ()ijf w , is the frequency of word iw in document jd .

 ()idf w , the document frequency of word iw .

Lastly, the weight of a word iw in a document jd is denoted by ijWeight . When

the document is not specified use iWeight , which means the weight of a word in

the whole collection.

Chapter 3

53

3.3.1 Term Frequency

In term frequency (TF) technique, the weight depends on the term frequency to

judge its importance. After parsing, stemming, and stop words removal, if needed,

we find how many times each word occurs in each document in the corpus. Then

we find the summation of all word frequencies in document jd . Then we divide

each word frequency by the summation of frequencies. The result is the weight of

each word. The words of highest weights are index terms candidates.

The weight in TF can be computed using the formula [53, 54]:

()
()

ij
ij

ij
i

f w
Weight

f w
=

∑
 (3.1)

In order to get a weight in the range [0, 1], obtain the word of maximum

frequency in each document and divide each word frequency by the maximum

word frequency in that document. To do this, equation (3.1) could be written as:

()
()()
ij

ij
ij

f w
Weight

Max f w
= (3.2)

Where ()()ijMax f w : The maximum word frequency in document jd .

Example:

Suppose that you have 3 documents. After parsing they can be written as:

d1= [Information, Retrieval, Automatic, Extraction, Retrieval]

d2= [Term, Extraction, Extraction, Extraction]

d3= [Yousef, Sabbah, Information, Extraction]

D= {d1, d2, d3}, n(D)= 3

Or we can write:

Chapter 3

54

w11= Information, w12= Retrieval, w13= Automatic, w14= Extraction, w14=

Retrieval

w21= Term, w22= Extraction, w23= Extraction, w24= Extraction

w31= Yousef, w32= Sabbah, w33= Information, w34= Extraction

WD={Information, Retrieval, Automatic, Extraction, Term, Yousef, Sabbah}

n(WD)= 7

We need a search algorithm to search for similar words in these vectors and count

the number of occurrences of each word in each vector and divide by vector

length, refer to TF algorithm represented by pseudo code in figure 4.6.

To be represented in the vector space, each document will be represented by a 7

elements vector of weights (using formula 3.2) as follows:

To compute the vector d1 for example, start with the word "Information" as

shown above in the set WD, count how many times it occurs in document d1 and

continue with other words until you finish the set. Find the word with maximum

frequency which is "Retrieval" in d1 with frequency equals to 2, then divide the

frequency of each word by this maximum frequency. Each word occurred once in

document d1 except the word "Retrieval" which occurred twice. Hence, the

weights of the words of d1 are 0.5, 1.0, 0.5, and 0.5 respectively. The weight of all

words of the set WD that didn't appear in d1 is 0. The result is shown below:

d1= [0.5, 1.0, 0.5, 0.5, 0.0, 0.0, 0.0]

d2= [0.0, 0.0, 0.0, 1.0, 0.33, 0.0, 0.0]

d3= [1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0]

Chapter 3

55

The above vectors can be written using a 7x3 term-by-document matrix in which

each vector represents a column and each word-weight represents a row. Each

entry WDij represents the weight of the word wij as follows:

0.5 0.0 1.0
1.0 0.0 0.0
0.5 0.0 0.0
0.5 1.0 1.0
0.0 0.33 0.0
0.0 0.0 1.0
0.0 0.0 1.0

DW

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.3)

These documents can be presented by a 7-Dimension vector space. The dimension

of the vector space depends on the number of unique words or WD.

In this example, the terms with highest weights are the index terms. As discussed

above, in the first document d1, the term "Retrieval" has the highest weight, so it

can be used as a keyword. In d2, the term "Extraction" may be used as a keyword.

Lastly, in document d3, any of the terms may be used as a keyword, because they

have the same weight. It is obvious that this process needs much computations

time for a huge collection with long documents.

3.3.2 Inverse Document Frequency

Inverse document frequency (IDF) is commonly used in Information Retrieval.

IDF is defined as: () ()2log /idf w n D− , where n(D) is the number of documents in

the collection and ()idf w is the document frequency or the number of documents

that contain iw [55]. For instance, if we have a collection of abstracts, each starts

Chapter 3

56

with the word "Abstract" while it doesn't give us a meaning although it appears in

all documents. So, the word which appears in fewer documents seems to be more

important.

Attempts have been made to apply weighting based on the way the index terms

are distributed in the entire collection. The index term vocabulary of a document

collection often has a Zipfian distribution, that is, if we count the number of

documents in which each index term occurs and plot them according to rank

order, then we obtain the usual hyperbolic shape. Sparck-Jones [9] showed

experimentally that if there are N documents and there is an index term, which

occurs in n of them then a weight of log (N/n) leads to more effective retrieval

than if the term were used not weighted. If indexing specificity is assumed to be

inversely proportional to the number of documents in which an index term occurs

then the weighting can be seen to be attaching more importance to the more

specific terms [9].

IDF weight is based on the assumption that term importance is inversely

proportional to the total number of documents to which the term is assigned. That

is, the smaller the number of documents containing the term, the greater the

importance of the term for discriminating between the documents. A measure of

the inverse document frequency for a term i can be written as [9]:

() ()
1

i
i

Weight
df w n D

= (3.4)

In general, we can compute the weight of a term in this technique using the

formula [31]:

Chapter 3

57

()
()2logi

i

n D
Weight

df w
= (3.5)

If we distribute the log, the equation (3.5) becomes:

() ()2 2log logi iWeight n D df w= − (3.6)

For the weight to be in the range [0, 1], divide by ()2log n D to get:

()
()

2

2

log
1

log
i

i

df w
Weight

n D
= − (3.7)

If we compute the weight of terms in the previous example using IDF technique

(using equation 3.7), we get the follwing vector space, term-by-document matrix:

0.37
1.0
1.0
0.0
0.0
0.0
0.0

DW

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.8)

To compute the vector WD for example, start with the word "Information" as

shown in the set WD in the previous example, count how many documents contain

it and continue with other words until you finish the set. "Information", for

instance, occurred in 2 documents out of 3. Use equation 3.7 to get:

()
()

2

2

log 2
() 1 0.37

log 3
Weight Information = − =

Repeat for the rest in the same procedure to establish a vector 3.8 for the

collection. Hence, the weights are: {(Information, 0.37), (Retrieval ,1.0) ,

(Automatic, 1.0) , (Extraction 0.0), (Term, 0.0), (Yousef, 0.0) , (Sabbah, 0.0)}.

Chapter 3

58

The candidate index terms of the collection are (Retrieval and Automatic),

because they occurred in only 1 document and their weights are both 1.

Notice that, although "Extraction" frequently appeared in d2, it might not be used

as a keyword, because it appears in all 3 documents and its weight is zero.

3.3.3 Combination of TF and IDF

TF weighting is not always efficient, especially if most of the terms have the same

frequency or have small deviation, and hence the same importance. That does not

give us a good result. The same happens with IDF weighting when most of terms

have approximately the same document frequency, which means that we have to

find a new technique. If we combine TF and IDF by multiplication, we derive a

new technique, which is TFxIDF technique. This technique leads to the result that

if TF and IDF weights of a term are high, this term has a very good opportunity to

be an index term. In other words the most important terms of a collection are

those, which occur more frequently in one document, and less frequently occurs in

other documents of the collection. For instance, if the words 'parallelism' and

'computer' both occur in 100 documents, they have the same IDF weight even in a

document in which 'parallelism' occurs 20 times and 'computer' only once. For

this reason in widely used TFxIDF weighting, IDF is multiplied by the number of

occurrences of a term i in a document jd .

To compute the weight of TFxIDF, multiply the term frequency ()ijf w by IDF

weight in equation (3.6) to get [32]:

 () () ()()2 2log logij ij iWeight f w n D df w= − (3.9)

Chapter 3

59

To force all weight values of TFxIDF to fall within the range 0 and 1, it is

necessary to normalize the weights. By this operation we increase retrieval

accuracy that longer documents are not unfairly given more weights. Normalized

weights may be obtained by formula (3.10).

() () ()()

() () ()()
2 2

2

2 21

log log

log log

ij i
ij

t
ij ii

f w n D df w
Weight

f w n D df w
=

−
=

⎡ ⎤−⎣ ⎦∑
 (3.10)

Again for the previous example (using equation 3.10), the term-by-document

matrix becomes:

0.163 0.0 0.577
0.882 0.0 0.0
0.441 0.0 0.0
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.577
0.0 0.0 0.577

DW

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.11)

It is hard to compute the above matrix 3.11 manually, it was computed using our

developed tool. If this result is compared with 3.3 and 3.8, we note that the result

is the same as in 3.3 with TF except that "Extraction" is removed from the

keywords list by the effect of IDF.

To improve weighting, Spark-Jones [18] added a third weighting input, which is

document length. A term of the same frequency in a short document and in a long

one is likely to be more valuable for the former [18].

()j ij
i

DL f w=∑ (3.12)

Chapter 3

60

The use of document length described below actually normalizes the measure by

the length of an average document [18].

j jNDL DL AVGDL= (3.13)

Where:

jDL : is the document length or the total of term occurrences in document jd

jNDL : is the normalized length of document jd

AVGDL : is the length of an average document.

If it is combined with equation (3.9) we get the formula [18]:

() () ()() ()

() ()
2 2log log 1 1

1 (1)
ij i

ij
ij j

f w n D df w K
CW

f w K b b NDL

• − • +
=

+ • − + •
 (3.14)

Where ijCW is the combined weight of the word i in document jd , K1 and b are

tuning constants between 0 and 1 to reduce or increase the effect of term

frequency. In tests K1=2 and b=0.75 are found to be effective. This formula has

proved effectiveness in trials during the TREC program [56].

Thus, TFxIDF weighting assigns a high degree of importance to terms occurring

frequently only in few documents of a collection.

3.3.4 Term Discrimination Value Model

Salton and Yang [32] proposed the Term Discrimination Value (TDV) on 1975

based on vector space, vector space refers that documents and queries are vectors

in an n-dimensional space for n terms. TDV measures the degree to which the

use of a term will help to distinguish the documents from each other. The

discrimination value of a term i can be computed by comparing AVGSIM (the

Chapter 3

61

average document-pair similarity calculated by comparing the words of

documents) with ()i
AVGSIM (the average document-pair similarity if the term i

is removed from all the documents) [33]. To compute average similarity or

density of document space, we use the following formula:

()
1 1

,
n n

j k j k
j k

AVGSIM K similar d d≠
= =

= ∑ ∑ (3.15)

Where

 K is a normalizing constant and similar() is a similarity function such as cosine

correlation factor, which was proposed by Salton to measure similarity of

documents as follows [57]:

 ()
() ()

() ()
1

2 2

1 1

,

t

ij ik
i

j k t t

ij ik
i i

Weight Weight
similar d d

Weight Weight

=

= =

•
=

•

∑

∑ ∑
 (3.16)

Where: (),j ksimilar d d : similarity between document jd and document kd .

 ijWeight : weight of term i in document jd .

ikWeight : weight of term i in document kd .

t : number of similar terms in documents jd and kd .

The range of similarity between two documents is (0-1, 0 for no similarity and 1

for identical).

Average similarity can be computed more efficiently using an average document

or centroid. Frequencies in the centroid vector are average of frequencies in

document vectors. We get:

Chapter 3

62

()
1

,
n

i
i

AVGSIM K similar D D
=

= ∑ (3.17)

Let ()i
AVGSIM be the density with term i removed from documents, we can

compute discrimination value for term i:

()i i
DISCVALUE AVGSIM AVGSIM= − (3.18)

Index terms may be placed then into three rough categories according to their

discrimination values:

1. The good discriminators with positive iDISCVALUE whose introduction

for indexing purposes decreases the space density.

2. The indifferent discriminators with a iDISCVALUE close to zero whose

removal or addition leaves the similarity among documents unchanged.

3. The poor discriminators whose utilization renders the documents more

similar, producing a negative iDISCVALUE .

Once again, iDISCVALUE computes the weight of each word with respect to the

collection not to each document. Some propose the multiplication of these

measures by document dependent measures such as term frequency ()ijf w . So it

can be computed to each term in each document by combining the term frequency

factor with the discrimination measure:

()ij ij iWeight f w DISCVALUE= • (3.19)

Another formula also can be used to measure the distance between documents in a

vector space [57]:

()2

1

t

jk ij ik
i

D Weight Weight
=

= −∑ (3.20)

Chapter 3

63

Where jkD is the distance between document j and document k that measures how

much document j is different from document k.

3.4 ATE Auxiliary Approaches

The following NLP approaches may be used to increase extraction efficiency and

effectiveness. They involve stemming and stop-words removal. These approaches

are sometimes combined in the parsing stage to reduce the number of words for

which weights will be computed which improve performance. On the other hand,

we get red of some meaningless words from the text to improve accuracy.

3.4.1 Porter’s Stemming

Porter proposed an algorithm for stemming words. It strips terms of common

suffixes that indicate plurality and verb tense [26]. For instance, the words

(compute, computes, computing, computed, computer, computerize,

computerized, computation) all are stemmed from the word (compute) and give

the same meaning. It will more efficient if the eight words are treated as one word

in reducing computations and improving accuracy.

Figure 3.3 illustrates the flow chart of Porter's algorithm. When a new word is

entered, its length is checked. If it is less than three letters, it is passed and moves

to the weighting stage of ATE. If its length is greater or equals to three letters, it

passes through six steps shown in table 3.1.

Chapter 3

64

Figure 3.3: Porter's stemming algorithm

As shown in table 3.1, Porter's algorithm works through a string in a series of

steps. In the first step, it removes pluralizations, including special cases. In the

Start

Enter a word w

m= number of VC's in w

Step 1

Step 2

k= w.length-1

k>1

Yes

Step 3

Step 4

Step 5

Step 6

Get w

Stop

k= 0

No

Examples:
<C><V> m= 0
<C>VC<V> m= 1
<C>VCVC<V> m= 2
<C>VCVCVC<V> m= 3
…………..
Where <..> indicates arbitrary presence

V: a sequence of successive vowels
in w
C: a sequence of successive
consonants in w
VC: a sequence of vowels followed
by a sequence of consonants
Example: Successful: cvccvcccvc:
CVCVCVC, hence, m =3

Chapter 3

65

second step, Porter’s converts y into i if the rest of the term contains a vowel, see

table 3.1 (step2). In step three, Porter's does pattern matches on some common

suffixes, such as those in table 3.1 (step3). These transformations remove suffixes

and replace them with their roots. For some special words, more transformations

are needed, and in step four, these cases are handled further transformations as

those in table 3.1 (step4).

In step five, the stripped word is checked against more suffixes in case the word is

compounded, including suffixes in table 3.1 (step5). The sixth and final step

checks if the stripped word ends in a vowel and fixes it appropriately, see table

3.1 (step6) [58]. After the word is stemmed, it will be ready to move to the

weighting stage using statistical techniques.

With Porter's stemming algorithm, word extraction is made much more powerful,

as variants of words (such as walk, walking, and walked) can be looked up as the

algorithm proceeds, which ensures that a search can locate appropriate terms that

would otherwise be missed [58].

3.4.2 Stop-words Removal

An optional operation in text analysis is stop-words removal. Stop- words are

function words that do not add meaningful information to the text like:

conjunctions (and, or, because, as, but, so), transitions (although, therefore,

however, furthermore), modifiers (few, little, much), prepositions (in, on, of, off)

and others.

Chapter 3

66

Table 3.1: Steps of Porter’s Stemming Algorithm [57]

Step Stemming Operation Step Stemming Operation

1 sses -> ss
ies -> i
ss -> s
s ->
(m > 0) eed -> ee
(*v*) ed ->
(*v*) ing ->
at -> ate
bl -> ble
iz -> ize

2 (*v*) y -> i

3 (m > 0) ational -> ate
(m > 0) tional -> tion
(m > 0) enci -> ence
(m > 0) anci -> ance
(m > 0) izer -> ize
(m > 0) abli -> able
(m > 0) entli -> ent
(m > 0) eli -> e
(m > 0) ousli -> ous
(m > 0) ization -> ize
(m > 0) ization -> ize
(m > 0) ation -> ate
(m > 0) ator -> ate
(m > 0) alism -> al
(m > 0) iveness -> ive
(m > 0) fulness -> ful
(m > 0) ousness -> ous
(m > 0) alitii -> al
(m > 0) iviti -> ive
(m > 0) biliti -> ble

4 (m > 0) icate -> ic
(m > 0) ative ->
(m > 0) alize -> al
(m > 0) iciti -> ic
(m > 0) ical -> ic
(m > 0) ful ->
(m > 0) ness ->

5 (m > 1) ance ->
(m > 1) ence ->
(m > 1) er ->
(m > 1) ic ->
(m > 1) able ->
(m > 1) ible ->
(m > 1) ant ->
(m > 1) ement ->
(m > 1) ment ->
(m > 1) ent ->
(m > 1) and (*s or *t) ion ->
(m > 1) ou ->
(m > 1) ism ->
(m > 1) ate ->
(m > 1) iti ->
(m > 1) ous ->
(m > 1) ive ->
(m > 1) ize ->

6 (m > 1 and *d and *l) ->

Chapter 3

67

When these words are removed from computations and analysis, performance

increases as well as accuracy. Because they always have the highest frequency in

documents, which means that they will be the index terms while they are not and

in fact, they have no meaning, they are used to connect words together to form

sentences.

3.5 Summary

In this chapter, we have focused on automatic term extraction that includes

extracting the keywords to be used as an index to search engines. We have

explained the main stages of a term extraction system. We have used four

statistical techniques including term frequency, inverse document frequency,

combined term frequency-inverse document frequency, and term discrimination

value model. These statistical techniques are used for term weighting to decide on

which terms to be the best index terms that describe a document or a collection of

documents. We have focused on how to compute the weights in each technique

with some examples to clarify the operation. Finally, we have discussed related

natural language processing techniques that may be used to improve ATE

performance and effectiveness, such as Porter's stemming algorithm and stop

words removal.

Next chapter describes the developed tool used to evaluate different techniques

used in our work. It is named automatic term extraction workbench (ATEWB).

Chapter 4

68

4 Automatic Term Extraction WorkBench

(ATEWB) System Description

ATE plays a main role in information retrieval; it is the first and the main stage of

any IR system. Many techniques and tools have been developed to improve this

process. However, the cost of manual indexing is very high. This fact urged

attempts to automate the process. In addition, it is interesting to develop a

customized computational tool that performs this stage to build the comparison

between different techniques depending on some experiments and their results. To

the best of my knowledge, there is no comprehensive tool that covers our work.

Most of them can be used in a specific part. This is why ATEWB is developed.

This chapter describes our developed tool which is an ATE System referred to as

Automatic Term Extraction WorkBench (ATEWB). It goes through the main idea

and function of the system and system design; this includes the main classes and

methods using class diagram and UML notation, which may help to understand

the whole system. Then all algorithms of ATEWB system (including all used

statistical techniques) are explained and described using pseudo code

representation.

4.1 An Overview of ATEWB

This thesis discusses Automatic Term Extraction WorkBench (ATEWB), a tool

developed for content analysis of a text file or a collection of text files or

Chapter 4

69

(electronic documents). The ATEWB extracts the index terms or the terms that

can be used as keywords to describe the contents of those electronic documents.

The overall architecture of our system is described in figure 4.1. The ATEWB

contains different modules that can be used to extract index terms.

Figure 4.1: Main stages of ATEWB system.

ATEWB main modules are:

• Text Parsing: distinguishes between each single word using a tokenizer with

space as a delimiter between words, because any other delimiters are cleaned

from the text by removing punctuation marks.

Statistical Techniques for weighting terms

TF IDF TFxIDF TDVM

List
Of
Index
Terms

DB

 Index Term Words

Parsing

Remove
Stop words

Collection of

Documents

Stemming

Chapter 4

70

• Stop-word removal: removing stop-words using a stop-word list to get rid of

any function word like on, of, over, this, at, .etc.

• Stemmer: stemming of words using any stemming algorithm, in ATEWB

Porter's algorithm is used; this is done by stripping suffixes from words to

make it easier to find similar-meaning words.

• Term Weighting: four statistical techniques were used for weighting terms.

Depending on the weight of each term, candidate index terms could be

extracted.

• Evaluation: computing Recall, Precision and Noise to measure the

effectiveness of the used statistical techniques and ATEWB Efficiency.

4.2 ATEWB package

The system ATEWB is implemented using JAVA. ATEWB package got benefit

of already built-in packages in JAVA. Figure 4.2 illustrates the UML diagram of

ATEWB package with main classes and how it is connected to the other built-in

packages. UML stands for Unified Modeling Language, which is a standard

notation for modeling object-oriented systems, it graphically describes a set of

elements connected together to build a system. It uses some UML relations like

associations and dependencies. Association notation is a dashed arrow (),

which represents the ability of one instance to send a message to another.

Dependency notation is an arrowed line () from one class to another, which

represents that the first class depends on the result of the second class. Inheritance

notation is a closed arrow (). As illustrated, ATEWB is the main package with

Chapter 4

71

Driver as the main class of the package. Other classes of ATEWB that are

connected to Driver class are: Dialog, fileNewDialog, Stemmer, computeTF,

computeIDF, computeTFxIDF and computeTDVM. ATEWB package performs

all algorithms used in the system.

The other used built-in packages are java.lang, java.awt, javax.swing, java.sql,

java.util and java.io.

• The language package java.lang is automatically imported into every Java

program; it contains the language's main support classes which are

fundamental to the design of the Java programming language.

• The Abstract Window Toolkit (AWT) package java.awt, provides support for

Graphical User Interface (GUI) programming and includes such features as

user interface components, event-handling models, layout managers, graphics

and imaging tools, and data transfer classes for cut and paste.

• The javax.swing Provides a set of "lightweight" (all-Java language)

components that work the same on all platforms, swing components are Pure

Java versions of the existing AWT component set, such as button, scrollbar,

and label, with an additional set of components, such as tree view, table, and

tabbed pane.

• The SQL package java.sql contains classes that provide the API for accessing

and processing data in a data source, it allows the Java platform to connect

with almost any database, even those written in other languages such as

Structured Query Language (SQL), the database package used in this thesis is

MYSQL 5.0.

72

Figure 4.2: UML diagram of ATEWB package

Chapter 4

73

• The java.util package contains various utility classes and interfaces that are

crucial for Java development such as date and time facilities.

• The I/O package java.io provides support for reading and writing data to and

from different devices, which includes input stream classes, output stream

classes, file classes, and the StreamTokenizer class used for text parsing,

which is the first phase in ATEWB system.

4.2.1 Design Issues

It may be asked, why to use database engine? And why we choose to use

MYSQL? In this context, it is necessary to mention that instead of a programming

language, a database engine (MYSQL here) is used as a data store and to do all

computations including term and document frequencies, inverted file creation,

correlation factors, similarity function, recall, precision, noise, and efficiency.

This is one of the most important design issues that speed up data processing and

heavy computations. It uses table indexing, multi-threading and applies high

performance algorithms in computations using small pieces of SQL commands

instead of tens of java code lines.

MYSQL database engine has suitable features that exactly fit this research. As

described in MYSQL manual on its web site,3 it has the following main features:

• Speed and Portability:

3 MYSQL web site: http://www.mysql.com

Chapter 4

74

1. Works on many different platforms, such as Windows 9x, Me, NT, 2000

and XP, different versions of UNIX and Linux and others.

2. Fully multi-threaded using kernel threads. This means it can easily use

multiple CPUs if they are available.

3. A very fast thread-based memory allocation system.

4. Very fast joins using an optimized one-sweep multi-join.

• Scalability:

1. Handles large databases. MYSQL Server has been used with databases that

contain 50 million records. MYSQL claims that some users used MYSQL

Server with 60,000 tables and about 5,000,000,000 rows.

2. Up to 32 indexes per table are allowed. Each index may consist of 1 to 16

columns or parts of columns. The maximum index width is 500 bytes.

In addition, the Connector/J interface provides MYSQL support for Java client

programs that use JDBC connections. Clients can be run on Windows or Unix.

Connector/J source is available by SUN company. All these features made

MYSQL suitable in the field of study and research.

4.3 ATEWB System Requirements

4.3.1 Hardware Requirements

Hardware requirements depend on size of the collection; it was tested on P2

400MHz processor with 64MB RAM for a collection size of 3.19MB of html files

which consists of 206863 word, 10991 unique terms after removing stop words.

The performance suffered from a big delay in the first three techniques, while

Chapter 4

75

hanging with no response in the fourth; see Table 4.1, which illustrates 3

experiments. The second experiment was done on P3 800MHz processor with

128MB RAM, the performance was somewhat acceptable, see Table 4.1. The

same collection was tested on P4 2.4GHz with 512MB RAM, the performance

was good, refer to table 4.1. The test was repeated on other systems, from which

the minimum system requirements to run well can be deduced:

1. P3 800MHz processor and more.

2. 128MB RAM and more.

3. 100MB minimum free hard disk space to install the package and its

software requirements.

But if the collection is greater in size such as search engines, it will need

computers with high specifications, suitable for huge computations.

Multiprocessor servers with parallel computing, or clusters of servers that form

together a supercomputer should perform this type of work.

Table 4.1: Performance Experiments for ATEWB system requirements

Description

Exp1
400MHz, 64MB

Exp2
800MHz, 128MB

Exp3
2400MHz, 512MB

ATE

Statistical
Technique

Time
(minuets)

Table
records

Time
(minuets)

Table
records

Time
(minuets)

Table
records

TF 12:17:99 11,053 06:00:40 11,053 02:29:33 11,053
IDF 15:13:22 10,991 07:24:12 10,991 02:59:43 10,991

TFxIDF 25:13:75 11,053 13:31:04 11,053 03:47:27 11,053
TDVM >500 Min 10,991 312:18:00 10,991 43:18:77 10,991

Notes

Collection size: 3.19MB. Document type: html. No. of words:
206,863. No. of documents: 2. No. of unique terms: 10,991

Chapter 4

76

4.3.2 Software Requirements

It was tested on different versions of MS Windows and Linux RedHat, and it was

operational, with higher performance on Linux.

1. Microsoft Windows 98, 2000 or XP, Linux RedHat7.0 or more.

2. MYSQL server 5.0, or connected to a MYSQL server on the network.

3. Java runtime virtual machine.

4.4 ATEWB Main Classes and Algorithms

This subsection describes ATEWB package and developed classes, their UML

Diagram, and algorithms in pseudo code. These classes together produce the

operational system with MYSQL as the database engine to store and process

generated textual data. ATEWB package has been tested on both Microsoft

Windows and UNIX operating systems and it operates well, without any change

in the classes. Test has been also done on the network and the performance was

very good, in this case the database server is installed on another machine than the

client’s. If another database like Oracle has been used, nothing would have been

done except using the Oracle connector provided by SUN instead of MYSQL

connector, this can be done by changing one line in the dbConnector class.

The declarations in table 4.2 will be used in the rest of this chapter; they are

instances of the most important classes that may be needed to call methods from

other classes.

Chapter 4

77

Table 4.2: ATEWB classes and instances used to call their methods

Class Name Instance Description
Driver drv The main class
Stemmer smr Porter’s stemming algorithm.
Stop stp Stop word removal before parsing
dbConnection cn Connect to database
dbOptions dbo Database options (user, password, schema name).
FileNavigator fn Search for files of specific type
fileNewDialog fnd Start new ATE project
computeTF tf Term Frequency
computeIDF idf Inverse Document Frequency
computeTFxIDF tfxidf Combination of TF and IDF
computeTDVM dv Term Discrimination Value Model
errorDialog ed Error dialog box
Evaluation eval Efficiency evaluation of ATEWB
showTF shtf Show TF result
showIDF shidf Show IDF result
showTFxIDF shtfxidf Show TFxIDF result
showTDVM shtdv Show TDVM result

4.4.1 Driver Class

Driver is the main class of ATEWB that controls and manages all other classes.

When executed the main screen appears in GUI. The main screen contains the

main menu; from file submenu choose "New", this will execute the

fileNewDialog class, which extends Dialog class, and a dialog box appears to the

user to start a new term extraction operation, this dialog contains the following

options:

• Choose the full path where the text collection to be extracted is stored.

• Choose the full path where the result will be stored.

• Choose file type in the collection to be extracted (text, htm or html) file.

• Specify if you want to use stemming or not.

• Choose the stop word list you want to use.

Chapter 4

78

Figure 4.3: Driver class diagram

Chapter 4

79

Pseudo Code for Main Driver

Step1: Declare the class and its public and private variables

Step2: Get instances from other needed classes

Step3: Show the main user interface with main menu using main() method

Step4: Start events and take suitable actions by calling methods of other classes

Step5: To start a new extraction, call fnd.setOptions() method and set options;

collection path, use stop word list or not, document type, stem or not, all

in GUI.

Step6: To connect to database, call cn.dbConnection() after setting database

options needed for connection, which includes user name, password,

schema name and database server. Use the following methods:

dbo.setUser(), dbo.setPWD(), dbo.getDBname(), dbo.getDBserver().

Step7: To parse the documents in the collection, stem words, remove stop words

and store words in the database, call smr.doStemming() method

Step8: To get the number of documents in the collection, call fn.getNod()

Step9: To get the number of terms in the collection, call idf.getNODT() method

Step10: Depending on the statistical technique chosen in statistical techniques

submenu in ATE menu, call the following methods: tf.tf(), idf.idf(),

tfidf.tfxidf(), dv.discValue()

Step11: To close the main Driver window and other open windows, call the

output method System.exit(0)

Figure 4.4: Pseudo Code for Main Driver

Chapter 4

80

If you choose "New ATE" from file submenu, this will execute fileNewDialog

class that sets new ATE options. "Connect to Database Server" in file submenu

executes dbConnection class to establish connection between ATEWB and the

database. If "Parse" is chosen from file submenu it will execute FileNavigator

class that navigates the collection to find all documents of chosen type, it also

executes Stop and Stemmer classes depending on the chosen options, then text

parsing and removing stop words operations start using a list stored in the

database, finally, stemming operation is performed. The result is a table

containing two fields: stemmed terms and their document ID.

Driver class is connected to most of the classes as reverse associations, which

allow receiving messages from them, refer to figure 4.2. Driver class consists of

25 methods, one of them is the constructor and the others are used to build and

show different user interfaces and menus of ATEWB. Figure 4.3 illustrates Driver

UML class diagram showing all class properties and methods. On the other hand,

figure 4.4 illustrates the pseudo code that describes the main steps of the main

class named Driver.class.

4.4.2 GUI, Navigation and Connection Classes

The following classes are used to generate the GUI's such as dialog boxes (Dialog,

fileNewDialog), document navigation (FileNavigator), and connection to database

(dbConnection).

Chapter 4

81

4.4.2.1 Dialog and fileNewDialog Classes

As illustrated in figure 4.2 Dialog and fileNewDialog classes are connected to

Driver class as reverse associations, fileNewDialog inherits Dialog and is

connected with reverse dependency to Driver. fileNewDialog class is executed

when "New ATE" is chosen from file submenu in the main menu. When executed,

the dialog box described in Driver above appears to set options of the new ATE

operation.

4.4.2.2 FileNavigator Class

This class is executed when "Parse" is chosen from "File" submenu in the main

menu. When executed it starts navigating the specified collection path to find all

documents of the selected type. It is connected with all classes that need

navigation of files and folders with dependencies.

4.4.2.3 dbConnection Class

This class is one of the most important classes in ATEWB, it is the class used to

establish connection with MYSQL database. MYSQL is the data store that stores

all terms after processing the contents of free text in documents. All classes of

statistical techniques connect to database and use SQL statements for computing

frequencies and weights of the terms on which the ATEWB depends to extract

index terms. The last result of any technique is stored in the database via this class

with Java connector.

Chapter 4

82

4.4.3 Statistical Techniques

In this subsection, four statistical techniques are described. A class diagram for

each technique is developed. Class diagram gives a general description of the

class and its methods. Pseudo code of the statistical techniques algorithms is

presented. For more details about the class implementation refer to appendix D.

4.4.3.1 Term Frequency Classes

This technique has two classes, computeTF class computes the weights, and

showTF class shows the table of terms and their weights. Choose "Compute TF"

from "Statistical Techniques" submenu in "ATE" menu in the main menu to

execute the former and "TF Result" to execute the latter. When "Compute TF" is

executed, it connects to ATE table containing the terms in the database through

dbConnection class. Term frequencies and weights are computed using SQL

statements. The result is stored in a table named ‘result’ in the database; this

inverted file contains term ID, term, term frequency, term weight and document

ID. By an SQL statement the range of weight ‘needed for a term to be candidate

index term’ is specified. Then connection to database is ended, and the result

appears in a GUI table by executing showTF class. Figure 4.5 illustrates the main

methods and properties of TF classes.

The method tf() is used to compute weights in computeTF class depending on

term frequency. Figure 4.6 illustrates the pseudo code of term frequency

algorithm. Fore more details on the implementation of TF classes, refer to

appendix D.

Chapter 4

83

Figure 4.5: Class Diagram of TF classes.

Input:

A table in the database containing terms of the collection and their

document IDs.

Output:

A table updated with each term and its frequency in each document, and

term weight after computations.

Pseudo code of tf() method.

Step1: Get instance of needed classes

Step2: Establish connection with ATE database

Step3: Delete the contents of term frequency table in database by SQL

statement, if it contains old data

Chapter 4

84

Step4: Use SQL statement to get the number of documents (the same number of

documents in the collection) in the terms table that created after parsing,

using document ID field

Step5: Set numDocs to the obtained number of documents

Step6: For ii going from 0 to numDocs

 Execute SQL statement to calculate the number of times a term

 occurs (term frequency) in document ii

 Update the term frequency table with the term (term), frequency

 (freq) and document ID (doc_id)

Step7: For ii going from 0 to numDocs

 Set sumFreq to the sum of term frequencies in document ii

 by executing SQL statement

 Set weight to ferq/sumFreq for each term and update

 weight field in term frequency table with its value

Step8: Call shtf.jbInit() and shtf.createColumns() methods to create a friendly

user interface consists of a table to contain the term frequency table, and

editable text area to contain a preview of the document containing the

selected term in the term column in the table. The table has five columns,

term ID, term, term frequency, term weight and document ID

Step9: Set GUI table cells to the data obtained from database by SQL statement

that selects specific data from term frequency table

Step10: Add mouse listener in shtf.jbInit() method that if any term is clicked, the

method shtf.loadFileIntoText(docId, term) will be called. This sets text

Chapter 4

85

area to the document containing the term, with term is marked in

different color

Step11: Shut down database connection

Figure 4.6: Pseudo code of tf() method.

4.4.3.2 IDF Classes

This technique has also two classes, computeIDF class computes the weights, and

showIDF class shows the table of terms and their weights. Choose "Compute

IDF" from "Statistical Techniques" submenu in "ATE" menu in the main menu to

execute the former, and "IDF Result" to execute the latter. When computeIDF

class is executed, it connects to ATE table containing the terms in the database

through dbConnection class. Document frequencies and weights are computed

using SQL statements. The result is stored in a table named ‘idfresult’ in the

database; this table contains term ID, term, document frequency and term weight.

By an SQL statement the range of weight ‘needed for a term to be candidate index

term’ is specified. Then connection to database is ended, and the result appears in

a GUI table by executing showIDF. Figure 4.7 illustrates the main methods and

properties of IDF classes.

computeIDF class computes weights depending on IDF using idf() method.

showIDF is used to design the GUI for the output. Figure 4.8 illustrates the

pseudo code of IDF algorithm.

Chapter 4

86

Figure 4.7: Class diagram of IDF classes.

Input:

A table in the database containing terms of the collection and their

document IDs.

Output:

A table updated with each term and its document frequency, and term

weight after computations.

Pseudo code of idf() method.

Step1: Get instance of needed classes

Step2: Establish connection with ATE database

Step3: Delete the contents of IDF table in database if it contains old data

Step4: Use SQL statement to get the number of documents (the same number of

documents in the collection) from the terms table that created after

parsing, using document ID field

Chapter 4

87

Step5: Set tnod to the obtained number of documents

Step6: Execute SQL statement to calculate the number documents containing a

term (document frequency) from the terms table created after parsing

Step7: Update the inverse document frequency table with the term (term),

document frequency (doc_freq)

Step8: Set weight to () ()tnodfreqdoc 22 log/_log1− for each term and

update weight field in inverse document frequency table with its value by

executing SQL statements

Step9: Call shidf.jbInit() and shidf.createColumns() methods to create a

friendly user interface consists of a table to contain the inverse document

frequency table. The table has four columns, term ID, term, document

frequency and term weight

Step10: Add mouse listener in shidf.jbInit() method that if any term is clicked,

the method shidf.loadFileIntoText(term) will be called. This sets text

area to the full paths of all documents containing the term

Step11: Set GUI table cells to the data obtained from database by SQL statement

that selects specific data from inverse document frequency table

Figure 4.8: Pseudo code of idf() method.

4.4.3.3 TFxIDF Classes

This technique has two classes, computeTFxIDF class computes the weights, and

showTFxIDF class shows the table of terms and their weights. Choose "Compute

TFxIDF" from "Statistical Techniques" submenu in "ATE" menu in the main

Chapter 4

88

menu to execute the former, and "TFxIDF Result" to execute the latter. When

compute TFxIDF is executed it connects to ATE table containing the terms in the

database through dbConnection class. Term frequencies, document frequencies,

and IDF weights are computed using SQL statements in two separate tables, then

TFxIDF weights are computed by joining the two tables and multiplying TF by

IDF weight for each term. The result is stored in a table named ‘tf_idf’ in the

database; this table consists of four fields; term ID, term, term weight and

document ID. By an SQL statement the range of weight ‘needed for a term to be

candidate index term’ is specified. Then connection to database is ended, and the

result appears in a GUI table by executing showTFxIDF class. Figure 4.9

illustrates the main methods and properties of TF classes.

computeTFxIDF computes the weights depending on TFxIDF using tfxidf()

method. Figure 4.10 illustrates the TFxIDF algorithm using pseudo code.

Figure 4.9: Class diagram of TFxIDF classes.

Chapter 4

89

Input:

A table containing each term and its frequency in each document, and term

weight after computations (TF technique output)

A table containing each term and its document frequency, and term weight

after computations (IDF technique output)

Output:

A table updated with each term and its TFxIDF weight, and term weight

after computations that multiply TF weight by IDF weight, in addition to

document ID

Pseudo code of tfxidf() method.

Step1: Get instance of each needed class

Step2: Establish connection with ATE database

Step3: Delete the contents of TFxIDF table in database if it contains old data

using SQL statement

Step4: Use SQL statement to get the number of documents (the same number of

documents in the collection) from the terms table that created after

parsing, using document ID field

Step5: Set tnod to the obtained number of documents

Step6: Execute SQL statement to calculate TFxIDF weight by joining the TF

table and IDF table and multiplying TF weight by IDF weight for each

term

Step7: Update the TFxIDF table with the term (term), TFxIDF weight (weight)

and document ID (doc_id)

Chapter 4

90

Step8: Call shtfidf.jbInit() and shtfidf.createColumns() methods to create a

friendly user interface consists of a table to contain the TFxIDF table,

and editable text area to contain a preview of the document containing

the selected term in the term column in the table. The table has four

columns, term ID, term, term weight and document ID

Step9: Set GUI table cells to the data obtained from database by SQL statement

that selects specific data from TFxIDF table

Step10: Add mouse listener in shtfidf.jbInit() method that if any term is clicked,

the method shtfidf.loadFileIntoText(docId, term) will be called. This

sets text area to the document containing the term, with term is marked in

different color

Step11: Shut down database connection

Figure 4.10: Pseudo code of tfxidf() method.

4.4.3.4 TDVM Classes

Two classes are also used for discrimination value model TDVM, computeTDVM

class to do computations, and showTDV class to get result. TDVM is developed

as an improvement on the previous techniques. It uses the weight obtained by one

of the previous techniques to check similarity between documents and find the

terms that discriminate between documents when they are removed from the

collection. The high discriminators have the highest weights. Computation class is

executed when you choose "Compute TDVM" from "Statistical Techniques"

submenu in "ATE" menu. If it is considered that TDVM uses weights obtained by

term frequency technique, when computeTDVM class is executed it will connect

Chapter 4

91

to ATE database and use term frequency table that contains terms and their

weights in each document. Then computes average similarity between documents

and subtracts it from average similarity after removing each term from the

collection one at a time. The result is the discrimination value of each term. Figure

4.11 illustrates all methods and properties of TDVM classes. To show the result,

choose "TDVM Result" from the same menu, which executes showTDV class and

the GUI table appears.

Figure 4.11: Class diagram of TDVM classes.

computeTDVM class performs heavy computations. It consists of six methods.

showTDV class is used to build the user interface. TDVM technique is presented

here with its most important methods using pseudo code. Figure 4.12 illustrates

pseudo code of discValue() method, figure 4.13 illustrates pseudo code of

AVGSIM() method and figure 4.14 illustrates pseudo code of cosineCorrFactor()

method.

Chapter 4

92

Input:

TF technique output table, term weight is extracted from this table.

IDF technique output table, term is extracted from this table.

Output:

A table updated with each term and its discrimination value after heavy

computations to find documents similarities

Pseudo code of discValue() method.

Step1: Establish connection with ATE database, to do so call the method:

cn.dbConnection(user, password)

Step2: Call the method AVGSIM(“”) and set AVGSIM to AVGSIM(“”)

obtained, which represents the average similarity between documents

before removing any term from the collection

Step3: Delete the contents of TDVM table in database if it contains old data using

SQL statement

Step4: Use a cursor in SQL statement to get all collection terms with no repetition

(distinct terms) from IDF table

Step5: While (cursor points to a new term) DO

 Set DISCVALUEk to AVGSIM(term)-AVGSIM

 Insert each term and its discrimination value into the output

 table prepared for that

Step6: Any exception, trace the exception and report it

Step7: Shutdown database, use cn.shutdown() method

Figure 4.12: Pseudo code of discValue() method.

Chapter 4

93

Pseudo code of AVGSIM(term) method.

Step1: Set avgsim to 0

Step2: IF term = “”

 Call the method prepRes() to prepare the input TF table

 For i going from 0 to fn.getNod()

 Call prepTab1(i) to initialize temporary table1

 For j going from 0 to fn.getNod()

 Call prepTab2(j) to initialize temporary table2

 Set avgsim to (avgsim + cosineCorrFactor()) to

 get sum of correlation factors between all documents

Step3: ELSE

 Set a flag to 1 in the TF input table for all terms equal to term

 Call the method prepRes() to prepare the input TF table

 For i going from 0 to fn.getNod()

 Call prepTab1(i) to initialize temporary table1

 For j going from 0 to fn.getNod()

 Call prepTab2(j) to initialize temporary table2

 Set avgsim to (avgsim + cosineCorrFactor()) to

 get sum of correlation factors between all documents

 Reset the flag in TF table

Step4: Return the average similarity (avgsim) between all documents with the

term (term) exists or with the term removed from computations

Figure 4.13: Pseudo code of AVGSIM() method.

Chapter 4

94

Pseudo code of cosineCorrFactor() method.

Step1: Set ccf to 0

Step2: Compute cosine correlation factor between every pair of documents using

the following SQL statement:

 SELECT SUM (r1.weight*r2.weight)/ SQRT (SUM (POW (r1.weight, 2))*SUM (POW (r2.weight, 2)))

from r1 join r2 using (term)

Step3: Return the Cosine Correlation factor (ccf) between pairs of documents

Figure 4.14: Pseudo code of cosineCorrFactor() method.

Note that some simple methods were excluded from pseudo code here. showTDV

class is a simple class to build the GUI for the result exactly the same as for TF

and IDF algorithms. Hence it was also excluded. For more details about them

refer to the complete code available in Appendix D.

4.4.4 ATE Auxiliary Approaches

This subsection describes two related NLP approaches used in this work. Stop and

Stemmer classes implement these algorithms.

4.4.4.1 Stop Words and Parsing Class

Stop class is executed during parsing to remove all stop words that do not affect

the meaning of the text. Stop word lists are stored in the database. A session is

established with database to compare any token parsed with words in the list. If it

exists in the list it is removed from the text, if not it is not affected. It gets all files

found in the specified collection path during parsing process, removes stop words

and store all remaining terms in a 2-dimentional vector containing a vector for

Chapter 4

95

each parsed file, each contains the terms of that file. Figure 4.15 shows all

properties and methods of Stop class.

Figure 4.15: Stop class diagram.

In addition to parsing words in the collection documents, it removes stop words if

any. Stop calss stores all documents before processing into the database for

further use as a cache. As illustrated in figure 4.15, Stop class consists of one

method named stop(). Figure 4.16 illustrates Pseudo code of stop words and

parsing algorithm.

Input:

A collection of documents with text, htm, or html format.

Output:

A vector of vectors, each vector in the container vector contains the terms

of a document in the collection after being parsed (stop words are removed

or not depending on user options).

A table containing each document in the collection and its ID, as it was

before any processing, stored in the database.

Chapter 4

96

Pseudo code of stop() method

Step1: Declare private and public variables, three instances of Vector class stop,

textFiles, allFilesTokens and an instance of each FileReader,

BufferedReader and StringBuffer as x, z, fileBody respectively to be

used to read files and an instance tt of StringTokenizer for text tokens

parsing

Step2: Call cn.dbConnection(dbo.getUser, dbo.getPassword) to establish

connection to ATE database

Step3: Set stop to stopwordList from stop table in ATE database

Step4: Set textFiles to fn.getCollection() to get collection documents

Step5: For I going from 1 to textFiles.size()

 Set coll to textFiles.elementAt(I), to get file name number I

 Set x to FileReader(new File(fn.getPath(), coll)), to read the file

 coll exists at collection path

 While (file is ready z.ready()) DO

 Read a line from the file z.readLine()

 Call fileBody.append(s+" ") to add line to the string s

 Set tt to StringTokenizer(s, " "), to parse words from s

 While (still words not parsed tt.hasMoreTokens()) DO

 Set sng to tt.nextToken().toLowerCase(), this

 coverts the parsed word to lowercase

 IF (the word is not in stop list !stop.contains(sng))

 Call fileTokens.addElement(sng) to add

Chapter 4

97

 the word sng to fileTokens vector

 Catch exceptions if occurred and report them

 Store document ID (I), name (coll) and contents

 fileBody after converting to string in lowercase in

 ATE database

 Call the method z.close() to close the document

 Call allFilesTokens.add(fileTokens) method to add

 the vector of words (fileTokens) in the vector of

 documents (allFilesTokens)

Step6: Shut down database session using cn.shutdown() method

Step7: Return the vector of documents allFilesTokens that contains the vectors of

words in each document fileTokens

Step8: Report Exceptions when occurred by the method ed.setError(“”)

Figure 4.16: Pseudo code of stop words and parsing algorithm.

4.4.4.2 Porter’s Stemming Algorithm (Stemmer Class)

This class is very important because it assists to find all words of the same

meaning even if there are some suffixes that make the word to seem different

while it is of the same stem. Many words containing the stem of one word are

presented by that word, which increases parsing performance. It uses Porter’s

algorithm, which was discussed in details in chapter three. Stemmer class gets the

elements of the vectors produced after parsing in Stop class and strips suffixes

from all terms. Then a connection is established to the database saving the

Chapter 4

98

stemmed terms in a table named ATE. After execution of Stemmer class, the

terms will be ready for applying any of the proposed statistical techniques. Figure

4.17 illustrates the main methods and properties of the class.

Figure 4.17: Stemmer class diagram.

Again, this algorithm is used to stem words by removing suffixes that indicate

plurality and verb tense. Refer to table 3.1 in chapter three for steps of stemming.

As illustrated in figure 4.17, Stemmer class consists of 20 methods; each performs

a specific task in stemming process. Figure 4.18 illustrates the pseudo code of the

main method doStemming(). The six steps of stem() method are described in

table 3.1. It describes the function of each of step1(), step2(), step3(), step4(),

step5() and step6() methods.

Chapter 4

99

Input:

A vector of vectors, each vector in the container vector contains the terms

of a document in the collection (part of Stop class output).

Output:

A table containing the collection’s terms (stemmed or not and repetition is

allowed) and their document IDs.

A table containing distinct terms. Both are stored in the database.

Pseudo code of doStemming() method in Porter’s stemming algorithm

Step1: Get instance from needed classes

Step2: Set vec1 to stp.stop()

Step3: Set x1 to 0

Step4: Call cn.dbConnection(dbo.getUser(),dbo.getPassword()) method to

connect to ATE database

Step5: Delete the old data from terms table in ATE database

Step6: For ii going from 0 to vec1.size()

 Set the vector vec to vec1.elementAt(ii)

 For r going from 1 to vec.size()-1

 Set term to vec.elementAt(r-1)

 IF (porter is set to true)

 Clean the word from noisy punctuation marks

 For g going from 0 to term.length, fill the array of

 stemming b by calling add(term.charAt(g))

Chapter 4

100

 Call stem() method which performs steps 1-6 in table 3.1

 Set u to toString(), this method retrieves the stemmed word

 as a string

 Increament the ID of stemmed term x1 by 1

 Execute SQL statement cn.execute(insert the term ID x1,

 stemmed term u, document ID ii into the terms table)

 Execute SQL statement cn.execute(Compute frequencies

 and weights of terms) and update ATE database

 ELSE

 Clean the word from noisy symbols or punctuation marks

 Set u to String.valueOf(term).trim(), by calling this

 method the term is converted to clean string

 Increment the ID of stemmed term x1 by 1

 Execute SQL statement cn.execute(insert the term ID x1,

 stemmed term u, document ID ii into the terms table)

 Execute SQL statement cn.execute(Compute frequencies

 and weights of terms) and update ATE database

Step7: Shutdown database session using cn.shutdown() method

Step8: Report Exceptions when occurred by the method ed.setError(“”)

Step9: Return the total number of stemmed documents vec1.size()

Figure 4.18: Pseudo code of doStemming() method in Porter’s algorithm.

Chapter 4

101

The other methods of Porter's algorithm and their main function are summarized

in table 4.3. For the more details refer to the complete code in Appendix D.

Table 4.3: Summery of Porter’s stemming methods

Method name Main Function
Stemmer() Class constructor to initialize private variables.
add(char ch) Adds a word to an array, character by character after checking

if it is a letter. This array will be the term to be stemmed.
toString() After a word has been stemmed, it can be retrieved by

toString() method.
cons(int i) Checks if a letter in the word is consonant.
cvc(int i) This method is used when trying to restore an e at the end of a

short word, e.g. cav(e), lov(e), hop(e), crim(e). It returns true if
i-2,i-1,i has the form consonant- vowel- consonant and also if
the second c is not a glide like w, x or y.

doublec(int j) It is used to check if the word contains double successive
consonants. It returns true if j,(j-1) contain a double consonant.

ends(String s) Checks if a word ends with a group of letters to be cut, e.g.
sses, ful, fully or full.

m() It measures the number of consonant sequences between 0 and
j. The number of VCs, vowel sequence of letters (V) followed
by a sequence of consonant letters(C). For instance the word
(working) is distributed as <>VCVC. It means that it contains
two VCs or m() returns 2.

r(String s) If m()>0, it sets (j+1),...k to the characters in the string s,
readjusting k, using setto(s) method.

setto(String s) It sets (j+1),...k to the characters in the string s, readjusting k.
vowelinstem() The method vowelinstem() returns true if a part of a word

from letters 0 to j contains a vowel.

4.4.5 Evaluation Class

This class measures the efficiency, accuracy and performance of ATEWB by

computing Recall, Precision, Noise and Efficiency. In Chapter two, section 2.8 we

described how these measures can be computed. Evaluation class is executed

when "Evaluation" is selected from "Tools" menu in the main menu. Figure 4.19

illustrates all properties and methods of Evaluation class.

Chapter 4

102

Figure 4.19: Evaluation class diagram.

The classes described above represent a case study which includes the four

statistical techniques discussed in chapter three. In addition, it includes some

important classes. Implementation details are presented in appendix D using java

complete code.

Chapter 4

103

4.5 Summary

In this chapter, we have described the main algorithms of our developed tool

(ATEWB). It describes the main function of each class and the main methods

using UML notation. On the other hand, the algorithms are described using

pseudo code.

The next chapter (chapter 5) aims at measuring the effectiveness and performance

of ATEWB. This evaluation is used to compare the used statistical techniques,

which is the main theme of this thesis.

Chapter 5

104

5 A Comparative study

This chapter is a comparative study, which represents the main theme of this

thesis. It includes a comparison between the four statistical techniques discussed

in chapter 3.

The comparison of ATE approaches may be conducted using mathematical

models and mathematical analysis such as the vector space model proposed by

Salton or experimentally by running some experiments and statistical analysis of

results using some evaluation measures to measure the effectiveness of each

technique.

The mathematical models of statistical techniques are already established, more

over, they are theoretically proved. Our contribution in this thesis is a comparative

study that compares between these mathematical models and we don't go through

modifying these models or proving them mathematically.

Most of recent studies use the well known evaluation measures (recall and

precision, see section 2.8) to evaluate ATE and IR systems. Even the tests of IR

systems in the international Text Retrieval Conference (TREC) use these

measures. These measures proved that they are sufficient in the evaluation process

of ATE and IR systems. This is why we use our developed tool for term

extraction, experiments, and evaluation of statistical techniques using these

measures. Our task is to find which technique to use and when or which

conditions give us the best results in each technique by comparing the efficiency

and effectiveness of each approach and the factors affecting them.

Chapter 5

105

5.1 Comparison methodology

5.1.1 Comparison Criteria

The criteria used here concentrate on performance and accuracy of each approach.

On the other hand, the effect of different conditions or factors ‘related to input

data and processing algorithms’ on the output is discussed. These conditions and

their effect are listed in table 5.1.

5.1.2 Main Factors Affecting Performance and Accuracy

Table 5.1 illustrates the main factors affecting the performance and accuracy of

our techniques and the expected effect depending on some statistical hypotheses,

these factors are explained below:

1. Collection size: it means the number of documents, if number of

documents increases, it means that number of words increases, hence

increase in computations time in all techniques, in summary:

• Computations time is linearly proportional to collection size for all

proposed techniques except for TDVM in which computations time is

dramatically affected by collection size. For N documents, correlation

factor is to be computed for N(N+1)/2 times. See figure 5.1.

• Accuracy of TF is not affected by collection size, because weight is

computed within each document separately and not affected by other

documents.

• In IDF, when the number of documents increases, the opportunity for a

word to occur in more documents increases, hence, increased accuracy

Chapter 5

106

and visa versa. For example if collection size=5, the opportunity for a

word to occur in more than one document is low. The result is; most of

terms have document frequency of 1 and weight of 1, hence all words

are important and can be index terms, which is not applicable. Even

though it depends on the relation between documents in the collection.

Table 5.1: Summary of factors affecting extraction results and expected effect

Effect on ATE Statistical Technique
Factor

TF IDF TFxIDF TDVM

Collection Size

Heavy
computations to
search for
similar terms,
accuracy not
affected.

More time for
computations,
Accuracy
depends on the
collection.

Depends on TF
and IDF. More
computations
and accuracy
depends on the
collection.

Very huge
computations,
nonlinear increase
in computations
time.

Document
Length

Affects accuracy
and time.

Affects accuracy
and time.

Affects accuracy
and time.

Affects accuracy
and time.

Combination of
different
Domains

Not affected.
Decreases
performance and
accuracy.

Decreases
performance and
accuracy.

Decreases
performance and
affects accuracy

Stop word
removal

Increases
parsing time a
little bit but
decreases time
of computations
well.
Accuracy
increases

Increases parsing
time a little bit
but decreases
time of
computations
well.
Accuracy
increases

Increases
parsing time a
little bit but
decreases time
of computations
well.
Accuracy
increases

Increases parsing
time a little bit but
decreases time of
computations well.

Stemming

Increases
parsing time but
decreases
computations
time

Increases parsing
time but
decreases
computations
time

Increases
parsing time but
decreases
computations
time

Increases parsing
time but decreases
computations time

Updating data

When new terms
are added or
document
modified

When
documents are
added or
collection is
modified

When
documents or
collection are
modified

It is time
consuming, so
cannot be updated
frequently

Cost and
Complexity
(coding,
hardware, time)

Low Low Medium High

Chapter 5

107

Collection size vs. Computations time for TDVM

0

50

100

150

200

250

300

350

400

450

500

2 7 12 17 22 27

N (Number of Documents)

T
(C

om
pu

ta
tio

ns
 ti

m
e

fa
ct

or
)

Number of
documents vs.
Computations
time for TDVM

Figure 5.1: Collection size vs. computations time for TDVM.

• TFxIDF is affected by both TF and IDF, so accuracy is proportional to

collection size.

• If the weights used in TDVM computations are TF weights, accuracy

is not affected by collection size.

2. Document length: it is the number of words within documents in the

collection.

• Computations time is proportional to document length for all proposed

techniques.

• According to accuracy, when document length is low, the opportunity

to words to occur more than one time within documents or within the

whole collection is low, hence term frequency or document frequency

will be the same for most of words if not all. This means that all words

Chapter 5

108

have the same weight and can not be judged which to be index term.

Hence, accuracy is proportional to document length.

3. Domain: it is the subject of documents in the collection. Documents in the

collection may be in one or more domains. When the collection contains

documents in different domains:

• Computations time is increased for all techniques except for TF because

the weight is computed within each document in TF, while in the other

techniques, the number of distinct words for which weight should be

computed may be increased. Hence computations time is increased.

• The same for accuracy, all techniques are affected except TF. Because

the opportunity for a word to occur in more documents is lower. Hence,

lower accuracy.

4. The effect of stop-words and stemmer are discussed in details in

subsection 5.2.1 in experiment one.

5. Data update: when documents are modified as well as the collection,

weights should be recomputed and modified in the engine. It is not

applicable to repeat computations very frequently, especially for

techniques that need huge computations like TDVM.

• The computations time may be increased or decreased depending on

modification type. A flag can be used that set to 1 for those modified

collections or documents. Accordingly, computations are repeated only

for those modified documents. Hence, improving performance and

reducing computations time.

Chapter 5

109

• If weights are not updated for a long time, many things may be modified

while index terms do not describe the documents, hence, low accuracy.

6. Cost and Complexity: it includes hardware, software and coding. The

simplest are TF, IDF and TFxIDF, computing weights is also simple, just

TFxIDF weighting needs an additional vector multiplication but reduced

one division operation for each document, and stay the same. Even though,

they do need high specifications for hardware and software when talking

about very large collections in different domains, which is true in real

world applications such as search engines. The most complex is TDV,

which needs huge computations that can not be performed unless on very

high specifications of hardware and software.

• Computations time may be very long for all techniques if the hardware

and software specifications are low, and if the program wasn’t well

coded by professionals.

• Accuracy also may be low if specifications are low, because techniques

that need higher specifications may be excluded even if they improve

accuracy.

5.2 Experiments, Results and Discussion

In this section, three experiments have been run. At each experiment, performance

and accuracy have been checked for each of the four statistical techniques, and a

comparison has taken place by computing Recall, Precision and Noise for each as

mentioned in section 2.8. For each technique, the computations may be done in

Chapter 5

110

different situations; when stemmer and stop word list applied, stemmer only, stop

list only applied and finally, when neither stemmer nor is stop word list applied.

Discussion of these results takes place in this section.

5.2.1 Experiment One

5.2.1.1 Objectives

This experiment is to measure the effect of stemming and stop-words removal on

the performance of statistical techniques.

5.2.1.2 Setup

In this experiment, the input is a small collection consists of (16) documents. The

domain of the collection is ‘Abstracts of some published papers in ATE and IR’.

The total number of parsed words of all documents in the collection is 2321

words. 38 Key words that may be reduced to 36, 34, or 32 depending on the

condition, prepared manually or by the authors of published papers. Table 5.2

illustrates collection description and some statistics of the input.

5.2.1.3 Procedure

For each statistical technique, 55 index terms are extracted (selected by the

system) each time, and compared with (lTRe = A+C =38) relevant keywords

prepared manually or by the authors of published papers (refer to appendix A).

This number (38) may be reduced down to 32 depending on the conditions

applied like stemming and stop word list, because these conditions remove some

words by unifying some different words of the same stem, or considering them as

Chapter 5

111

stop words. In addition, it is necessary to apply the conditions in both term

extraction and query.

Table 5.2: Experiment 1 collection description and statistics

Number of terms

Condition

Applied
Technique

B
ef

or
e

co
m

pu
ta

tio
ns

A
ft

er

co
m

pu
ta

tio
ns

A B A+C

TF 1402 15 40

IDF 662 8 47

TFxIDF 1402 14 41

No

conditions

applied
TDVM

2321

662 17 38

38

TF 930 18 37

IDF 544 12 43

TFxIDF 930 19 36

Stop

words list

TDVM

1266

544 20 35

36

TF 1290 21 34

IDF 540 10 45

TFxIDF 1290 17 38

Porter's

Stemming

TDVM

2251

540 20 35

34

TF 852 24 31

IDF 442 15 40

TFxIDF 852 21 34

Both Stop

list and

Porter's

Stemming TDVM

1263

442 25 30

32

For each technique, four conditions were applied: in the first no condition applied,

in the second stop word removal, in the third stemming algorithm is applied, and

lastly both stop word removal and stemming are applied. At each time recall,

Chapter 5

112

precision and noise evaluation measures are recorded using the developed

Evaluation class. Then the comparison of these measures takes place using

graphical charts. Refer to tables (5.2, 5.3) and figures (5.2-5.4). Finally, a

discussion takes place upon the obtained results.

Table 5.3: Recall, Precision and Noise of Experiment 1 with different conditions.

Condition Applied Technique Recall Precision Noise

TF 0.395 0.273 0.727

IDF 0.21 0.145 0.855

TFxIDF 0.368 0.255 0.745
No conditions applied

TDVM 0.447 0.309 0.691

TF 0.5 0.327 0.673

IDF 0.333 0.218 0.782

TFxIDF 0.528 0.345 0.655
Stop words list

TDVM 0.555 0.364 0.636

TF 0.618 0.382 0.618

IDF 0.294 0.182 0.818

TFxIDF 0.5 0.309 0.691
Porter's Stemming

TDVM 0.588 0.364 0.636

TF 0.75 0.436 0.564

IDF 0.468 0.273 0.727

TFxIDF 0.656 0.382 0.618

Both Stop list and Porter's

Stemming

TDVM 0.781 0.455 0.545

Chapter 5

113

Recall vs. Statistical Technique

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Factor

R
ec

al
l

TF
IDF
TFxIDF
TDVM

TF 0.395 0.5 0.618 0.75

IDF 0.21 0.333 0.294 0.468

TFxIDF 0.368 0.528 0.5 0.656

TDVM 0.447 0.555 0.588 0.781

None Stop Words Stemming Both

Figure 5.2: Recall vs. Statistical Technique/ Factor

Precision vs. Statistical Technique

0.00

0.10

0.20

0.30

0.40

0.50

Factor

Pr
ec

is
io

n

TF

IDF

TFxIDF

TDVM

TF 0.273 0.327 0.382 0.436

IDF 0.145 0.218 0.182 0.273

TFxIDF 0.255 0.345 0.309 0.382

TDVM 0.309 0.364 0.364 0.455

None Stop Words Stemming Both

Figure 5.3: Precision vs. Statistical Technique/ Factor

Chapter 5

114

Noise vs. Statistical Technique

0
0.1

0.2
0.3
0.4

0.5
0.6
0.7

0.8
0.9

Factor

N
oi

se TF

IDF

TFxIDF

TDVM

TF 0.727 0.673 0.618 0.564

IDF 0.855 0.782 0.818 0.727

TFxIDF 0.745 0.655 0.691 0.618

TDVM 0.691 0.636 0.636 0.545

None Stop w ords Stemming Both

Figure 5.4: Noise vs. Statistical Technique/ Factor

5.2.1.4 Results

In this experiment we measure Recall, Precision and Noise of different techniques

with different conditions applied, see section 2.8. Refer to table 5.3 and figures

(5.2-5.4) for more details.

5.2.1.5 Discussion and Conclusions

After reviewing results illustrated in table 5.3 and figures (5.2-5.4) the following

conclusions are deduced:

1. Recall is improved by stop-words removal as well as by stemming. The effect

of stemming is more towards improvement in TF and TDVM, but in IDF and

TFxIDF stop-list affects the result more towards improvement. When both

stemming and stop-list are applied we get the best recall for all techniques, see

Chapter 5

115

figure 5.2. By removing unwanted stop words, computation time is reduced by

45% (1055 words removed from computations out of 2321 words); while

stemmer reduces computation time by 3% (71 words out of 2321 words are

removed from computations). Refer to table 5.2.

2. Unless with stemming, TDVM technique has the best Recall, see figure 5.2.

TF and TDVM are competing, their Recall is approximately the same in all

situations and TF is the best with stemming, taking into consideration that

TDVM computation time is multiple times than TF.

3. TFxIDF technique comes the third in Recall except with stop-words it is the

second; it always competes with TF and TDVM, refer to figure 5.2.

4. The worst recall or it may be not recommended to use IDF alone as a

weighting technique, see figure 5.2. IDF is needed to improve the performance

by combination with other techniques depending on documents rather than on

the collection such as TF.

5. Precision has nearly the same behavior like Recall, with better Precision for

TDVM except with stemmer for TF, refer to figure 5.3.

6. TFxIDF is the third except with stop-words it is the second and IDF has the

worst Precision in all cases, refer to figure 5.3.

7. TF has better precision with stemmer. IDF and TFxIDF have better precision

with stop-list. TDVM has the same precision with stemmer or with stop-list,

refer to table 5.3 and figure 5.3.

8. Noise is the complement of Precision, which means that (N=1-P). Refer to

figure 5.4. Proof: 1A B A BP N
A B A B A B

+
+ = + = =

+ + +
, hence N=1-P.

Chapter 5

116

9. The best value of R and P was for TDVM with both stemmer and stop-word

removal applied with 0.781 and 0.455 respectively, but the highest

computations time. Refer to table 5.3.

5.2.2 Experiment Two

5.2.2.1 Objectives

The main objectives of this experiment are:

• To check the effect of collection size (number of documents) on the result.

It will be compared with experiment3, which uses the same collection but

with higher number of documents. This comparison takes place in

subsection 5.2.3.5.

• To get results of TDVM for small collection size, because it cannot be

done on large collections unless with supercomputer which is not available

in Palestine.

• It also aims at comparing ATEWB on different Operating Systems.

5.2.2.2 Setup

The collection used in this experiment is obtained as a test collection from IR

resources. NPL collection (also known as the VASWANI) is a collection of

around 10,000 documents. It is available for research purposes in the IR group,

University of Glasgow [59].

This experiment is done on the first (100) documents to extract index terms and

measure ATEWB system’s performance. The domain of the collection is ‘The use

Chapter 5

117

of digital computer in scientific fields’. The suggested keywords list is also

available. It consists of 52 terms. Refer to Appendix A.

Table 5.4 describes the collection used in this experiment using each technique,

after computations are done. The number of words of the whole 100 documents is

3546 words. After stemming and removing stop-words, the number is reduced to

1906, refer to table 5.4.

Table 5.4: Experiment 2 collection description.

Statistics Technique Conditions
words after

condition
words after
computations

TF 1906 1607
IDF 1906 814

TFxIDF 1906 1607

TDVM

Stemming
and Stop

words
removal

1906
814

319 computed &
495 by default = 0

5.2.2.3 Procedure

This experiment applies both stemming and stop-word removal approaches. After

extracting the terms, three measures have been computed; Precision, Recall and

Noise. This experiment is divided into three sub-experiments with total number of

relevant terms (A+C) = 52 (refer to appendix A):

Exp 2.1 In this case, total number of retrieved terms (A+B) = 65.

Exp 2.2 In this case, total number of retrieved terms (A+B) = 97.

Exp 2.3 In this case, total number of retrieved terms (A+B) = 132.

Chapter 5

118

Then, average recall, precision and noise are computed and a comparison has

taken place with different values of retrieved terms (A+B). The four statistical

techniques are used.

The procedure in which TDVM results are obtained is an interesting issue. By this

procedure we have improved the performance dramatically as follows:

1. All words whose document frequency equals to 1 are excluded from

computations, because correlation factor is measured between two

documents, each containing at least 1 similar word as in the other. For

these words (more than half the words of the collection), DV equals to

zero without any computations.

2. The same words are also excluded from TF table containing the weights

used with TDV computations (also 495 words out of 1607 excluded).

3. MYSQL database was installed on Linux Enterprise 3.0 instead of

Windows 2000.

4. Two other instances of ATEWB were installed on other 2 PCs. The three

computers start computations, each for a specified range of words, and all

updating the same TDV table in the database with terms and their DV.

5.2.2.4 Results

Table 5.5 describes the computations of R, P and N, while table 5.6 illustrates

average R, P, and N that measure ATEWB performance.

Chapter 5

119

Table 5.5: Recall, Precision and Noise of three parts of Experiment2.

Experiment Technique A B C Recall Precision Noise

TF 21 44 31 0.404 0.323 0.677

IDF 6 59 46 0.115 0.092 0.908

TFxIDF 10 55 42 0.192 0.154 0.846
Exp 2.1

TDVM 23 42 29 0.442 0.354 0.646

TF 25 72 27 0.481 0.258 0.742

IDF 6 91 46 0.115 0.062 0.938

TFxIDF 11 86 41 0.212 0.113 0.887
Exp 2.2

TDVM 25 72 27 0.481 0.258 0.742

TF 27 105 25 0.519 0.205 0.795

IDF 6 126 46 0.115 0.045 0.955

TFxIDF 21 111 31 0.404 0.159 0.841
Exp 2.3

TDVM 25 107 27 0.481 0.189 0.811

Table 5.6: Average Recall, Precision and Noise of Experiment 2

Technique Avg. R Avg. P Avg. N

TF 0.468 0.262 0.738

IDF 0.115 0.066333 0.933667

TFxIDF 0.269333 0.142 0.858

TDVM 0.468 0.267 0.733

Chapter 5

120

Recall vs. Statistical Technique

0

0.1

0.2
0.3

0.4

0.5

0.6

Statistical Technique

Re
ca

ll Exp 2.1
Exp 2.2
Exp 2.3

Exp 2.1 0.404 0.115 0.192 0.442

Exp 2.2 0.481 0.115 0.212 0.481

Exp 2.3 0.519 0.115 0.404 0.481

TF IDF TFxIDF TDVM

Figure 5.5: Effect of increasing number of retrieved terms on Recall.

Precision vs. Statistical Technique

0

0.1

0.2

0.3

0.4

 Statistical Technique

Pr
ec

is
io

n Exp 2.1
Exp 2.2
Exp 2.3

Exp 2.1 0.323 0.092 0.154 0.354

Exp 2.2 0.258 0.062 0.113 0.258

Exp 2.3 0.205 0.045 0.159 0.189

TF IDF TFxIDF TDVM

Figure 5.6: Effect of increasing number of retrieved terms on Precision.

Chapter 5

121

Noise vs. Statistical Technique

0
0.2
0.4
0.6
0.8

1
1.2

Statistical Technique

N
oi

se

Exp 2.1
Exp 2.2
Exp 2.3

Exp 2.1 0.677 0.908 0.846 0.646

Exp 2.2 0.742 0.938 0.887 0.742

Exp 2.3 0.795 0.955 0.841 0.811

TF IDF TFxIDF TDVM

Figure 5.7: Effect of increasing number of retrieved terms on Noise.

Avg. R, P and N

0

0.2

0.4

0.6

0.8

1

Avg. R Avg. P Avg. N

Measure

Va
lu

e

TF
IDF
TFxIDF
TDVM

Figure 5.8: Average Recall, Precision and Noise

Chapter 5

122

Figures (5.5- 5.7) illustrate the results shown in table 5.5, which measures the

effect of increasing retrieved terms (index terms selected by the system) on

system performance. Figure 5.8 illustrates average R, P and N using charts.

5.2.2.5 Discussion and Conclusions

The results above will be discussed again in experiment 3. There will be a

comparison between the results of experiments 2 and 3 to measure the effect of

collection size.

1. After optimization in TDVM as described in the procedure, the performance

is improved as follows:

• Step 1 improves the performance in this experiment by 60.8% (495 words

out of 814 words are excluded from computations). Refer to table 5.4.

• Step 2 improves the obtained performance again by about 10%

(nonlinear). For accumulative performance improvement of 64.72%.

• Step 3 improves the performance by other 28.56% (computations time

needed to extract each term is reduced from 32.14 seconds to 22.96

seconds to compute DV for one term).

• Step 4 again improves the performance by other 66%. TDV table is

obtained by around 1hr instead of 3hrs. Accumulative improvement is

about 91%. Or it can be said that computation time is reduced to 9% of

original time, (all terms extracted in about 1hr instead of 11 hrs).

2. By reviewing table 5.5 and figures (5.5-5.7), it is obvious that as the total

number of retrieved terms (A+B) is proportional with recall and reversely

proportional with precision in all techniques.

Chapter 5

123

3. A compromise should be taken between P and R to get the best effectiveness,

the relationship between recall and precision looks like figure 5.11.

4. From table 5.6 and figure 5.8, we get the best results with average recall

precision pair 0.468 and 0.267 when TDVM is used.

5.2.3 Experiment Three

5.2.3.1 Objectives

The main objective of this experiment is to decide which technique is the best in

terms of efficiency and effectiveness. It also aims at measuring the effect of the

variance of Total Retrieved Terms (RetT A B= +) on Recall and Precision. In

addition, it measures the effect of increasing number of document on the

performance in comparison with results obtained in experiment 2.

5.2.3.2 Setup

This experiment is done on the same NPL collection with (1000) documents; it

needs more and more time to be computed. Number of words before stemming

and removing stop-list is (34,000), after this operation they become (19,178)

words. Table 5.7 represents computation time to complete the first three

techniques (TF, IDF and TFxIDF) with some statistics. It also represents

estimation for computations time of the fourth technique (TDVM), because it

needs very long time, and we couldn't get results on P4 PC. The total number of

relevant keywords used (A+C) is 57 (refer to appendix A), and the total number of

Chapter 5

124

retrieved terms (A+B) varies from 60 in exp3.1, 80 in exp3.2, 100 in exp3.3, to

120 in exp3.4.

5.2.3.3 Procedure

For each value of (A+B), we compute R, P, and N and plot them together in one

graph for each technique alone. We then draw the R-P relation as shown in figure

5.11. On the other hand, we compute the average R, P, and N for each technique.

The results of experiment 2 are then compared with the results of this experiment

to measure the effect of collection size on ATEWB performance. After results are

obtained, these results are discussed and conclusions are summarized.

5.2.3.4 Results

As shown in table 5.7, the highest computations time is with TDVM then with TF.

TDVM computation time can be estimated in a simple way. Suppose that the time

needed to compute cosine correlation factor once equals to the time needed to

compute it in experiment2, which is about 0.002235 seconds after optimization

described in the discussion in sub-section 5.2.2.

Total time consumed can be written as:
1

0
1

. .
N

i
T K T i

−

=

= ∑ where K is number of

terms to be extracted, N is number of documents and 0T is time estimated to

compute correlation factor once for two documents.

()
999

1

1499 0.002235
i

T i
=

= ∑ = 1,617,425.6 seconds ≈ 18.7 days.

Chapter 5

125

TDVM was computed with 200 documents, it consumed 24 hrs to extract 6 terms

and still waiting the next 450 terms. This leads to the conclusion that it can not be

computed unless a supercomputer is available.

Table 5.7: Computation time estimation and term statistics of Experiment3.

Technique Extracted terms Computation time (s) Notes
Parsing 19,178 11 seconds 1743

word/second
TF 16,063 190.32 seconds 84 term/second
IDF 2608 16.61 seconds 157 term/second
TFxIDF 16,063 17.40 seconds 923 term/second

TDVM 1449 out of 2608 1,617,425.6 seconds
or about 18.7 days

77 term/day

Table 5.8: Experiment3 computations of R, P and N

Experiment Technique A B C Recall Precision Noise

TF 18 42 39 0.316 0.300 0.700

IDF 4 56 53 0.070 0.067 0.933 Exp 3.1

TFxIDF 38 22 19 0.667 0.633 0.367

TF 24 56 33 0.421 0.300 0.700

IDF 4 76 53 0.070 0.050 0.950 Exp 3.2

TFxIDF 46 34 11 0.807 0.575 0.425

TF 27 73 30 0.474 0.270 0.730

IDF 4 96 53 0.070 0.040 0.960 Exp 3.3

TFxIDF 46 54 11 0.807 0.460 0.540

TF 30 90 27 0.526 0.250 0.750

IDF 4 116 53 0.070 0.033 0.967 Exp 3.4

TFxIDF 46 74 11 0.807 0.383 0.617

Chapter 5

126

Table 5.9: Average Recall, Precision and Noise of Experiment 3

Technique Avg. R Avg. P Avg. N

TF 0.43425 0.28 0.72

IDF 0.07 0.0475 0.9525

TFxIDF 0.772 0.51275 0.48725

Table 5.8 illustrates four parts of experiment3 excluding TDVM. Figures 5.9 and

5.10 illustrate the variation of R, P and N with respect to variation in the number

of total retrieved terms (A+B) selected by ATEWB system from 60 to 120 for

both TF and TFxIDF techniques. Because of bad performance IDF is excluded.

Figure 5.11 illustrates the R-P relationship for TFxIDF technique, which is similar

in other statistical techniques. Average recall, precision and noise are illustrated in

figure 5.12.

R, P, N vs. Total Retrieved Terms, where A+C=57
using TF Technique

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800

60 80 100 120

A+B

Va
lu

e
of

 R
 P

 N

Recall
Precision
Noise

Figure 5.9: Relation between R, P and N for TF.

Chapter 5

127

R, P, N vs. Total Retrieved Terms, where
A+C=57 using TFxIDF Technique

0.000

0.200

0.400

0.600

0.800

1.000

60 80 100 120

A+B

Va
lu

e
of

 R
, P

,
N

Recall
Precision
Noise

Figure 5.10: Relation between R, P and N for TFxIDF.

R vs. P

0.100

1.000
0.383 0.460 0.575 0.633

P

R R vs. P

Figure 5.11: R-P relationship for TFxIDF.

Chapter 5

128

Avg. R, P, and N

0

0.2

0.4

0.6

0.8

1

1.2

Avg. R Avg. P Avg. N

Measure

Va
lu

e TF

IDF

TFxIDF

Figure 5.12: Average Recall, Precision and Noise

5.2.3.5 Discussion and Conclusions

1. In this experiment stemmer together with stop-list removal improved the

performance by 43.6% (The number of parsed words to be used in

computations is reduced from 34,000 to 19,178). Refer to table 5.7.

2. TFxIDF technique gives the best results in this experiment (computation

time, Recall, Precision and Noise). Table 5.7 shows the time estimation of

computations for each technique on P4 2.4GHz PC with 512MB RAM.

The best is TFxIDF with 923 terms/second extraction rate. It has also the

highest average (R, P) values of (0.772, 0.51) and the lowest average N

value of 0.49, refer to table 5.9.

3. As the total relevant terms (A+C) is constant, if (A) is increased (C) will

decrease, hence increasing R. Figures (5.9- 5.11) prove this result.

4. If total retrieved terms (A+B) is increased, it means that the probability of

retrieving more relevant terms (A) would be increased. If (A) is kept

Chapter 5

129

constant, (B) will increase, hence reduced P and increased N. Refer to

figures (5.9- 5.11).

If results here are compared with results of experiment2:

1. TF in experiment2 is nearly the same as in experiment3, which means that

TF is not affected by collection size.

2. Also, when the number of documents was increased, IDF results were

badly reduced. This is normal because when the number of documents is

increased, the probability that a term appears only in one document

increases; this means that the number of terms having the weight (1) will

be very large, not because of importance but because of large number of

documents, accuracy depends on the collection characteristics. This result

again emphasizes that IDF can not be used alone for weighting, refer to

tables (5.5, 5.6, 5.8, and 5.9).

3. It is clear that R, P, and N of TFxIDF are improved in experiment3. This

means that when the collection size was increased, the result of TFxIDF

was improved. But this is not always true, because TFxIDF depends on TF

and IDF. Here TF is not affected and IDF is worse than in experiment2, so

the results of TFxIDF have to behave like them with some improvement.

But why we have got better results for TFxIDF in experiment3? It may be

because we got 1000 documents randomly from the NPL collection, and it

was very hard to specify the relevant keywords used in computing R, P,

and N measures.

Chapter 5

130

4. The highest average (R, P) was for TDVM and TF in experiment2. If

compared with highest average (R, P) values in experiment3 which was

for TFxIDF, (0.468, 0.267) in experiment2 for TDVM and TF vs. (0.772,

0.513) in experiment3 for TFxIDF, refer to tables (5.6, 5.9) and figures

(5.8, 5.12).

5.3 Comparison with Previous Studies

Most of previous studies concentrate on evaluation of IR systems as complete IR

systems. They measure recall and precision depending on relevance of retrieved

documents like that used in TREC. In ATE as a stage of information retrieval, we

concentrate on reflecting these measures on keywords depending on relevance of

retrieved terms. We can not compare our results with the results obtained by IR

systems or TREC results, because of different point of view. Just a small portion

of researches used our method. For example, Zechner's system achieves

recall/precision values of 0.55/0.46 for extraction of keywords from abstracts of

six sentences and values of 0.74/0.41 from abstracts of ten sentences [60].

One of the most recent ATE systems was proposed by Kerner on 2003 to extract

keywords from abstracts and titles [61]. He used two features; term frequency and

importance of sentences depending on their position in the text and analysis of

text using syntactic relations. This model was applied on a set of abstracts of

academic papers containing keywords composed by their authors as we did in

experiment 1. He used another method of evaluation using full mach, partial

match, and failures. To be compared with our results, let the tested 332 keywords

be the total number of relevant keywords (A+C), and total matches (full or partial)

Chapter 5

131

be the number of retrieved relevant 205 keywords (A), then recall equals to

(205/332=0.617). On the other hand, failures are 0.383.

If both results are compared with our best results (average recall/precision of

0.781/0.455 for TDVM in experiment 1 and 0.772/0.513 for TFxIDF in

experiment 3), our results are slightly better. Refer to tables 5.3 and 5.9. However,

the systems might not be comparable, because they deal with different tasks, and

with different techniques and different kinds of domains or documents.

5.4 Summary

In our comparison we concentrated on retrieval and relevancy of the extracted

keywords to calculate recall and precision evaluation measures. These measures

were calculated in the three experiments for all techniques in different conditions.

Results of experiment 1 have shown that the best results for all techniques are

obtained when both stemming and stop-words removal are applied. TDVM got

the best recall/precision pair with the values 0.781/0.455, then TF with

0.75/0.436, then TFxIDF with 0.656/0.382, and finaly, IDF with 0.468/0.273.

Results of experiment 2 have shown that recall is proportional with the number of

retrieved terms extracted by ATEWB, while precision is inversely proportional

with the number of retrieved terms. The best recall and worst precision are

obtained in exp 2.3 for all techniques when 132 terms are retrieved. The worst

recall and best precision are obtained in exp 2.1 when 65 terms are retrieved.

Results of experiment 3 have shown that the fastest technique is TFxIDF which

weights about 923 term/second, while the slowest is TDVM which weights about

77 term/day by estimation. Results have also shown that recall, unlike precision,

Chapter 5

132

is proportional with the number of retrieved terms. The best recall/precision value

for TF is 0.421/0.30 and for TFxIDF is 0.807/0.575 when the number of retrieved

terms is 80. It is clear that TFxIDF got the highest scores in this experiment.

Results of experiments 2 and 3 have shown that TF and IDF was not affected by

collection size (nearly the same recall/precision in both experiments). TFxIDF

was clearly improved by increasing the collection size; average recall/precision is

changed from 0.269/0.142 to 0.772/0.513.

In general we can say that the best result can be obtained if we use TFxIDF

technique with stemmer and stop words are applied. In addition, TFxIDF gives the

best results as the size of the collection is increased, and when the total number of

relevant keywords approximately equals to the total number of retrieved terms.

IDF may be excluded; it just improves TF if combined with it. TDVM also may

be excluded because of complexity and high specifications of needed hardware.

Chapter 6

133

6 Conclusions and Future Work

6.1 Conclusions

There is a huge amount of information distributed all over the world through

Internet, intranets and electronic libraries. All are thinking how to get the

information as fast as possible. When your collection becomes large, you loose

your time searching for a piece of information.

Term extraction is the first step to get your information as fast as possible, it is the

base of search engines and content filters. It builds the keywords or index terms of

documents to describe their contents. These index terms may be used for search

engines; that is when you enter a query to a search engine, your query is parsed

and compared with the index terms produced by the term extractor. If any is

matched, it refers to the document/documents containing it. This is what ATEWB

was developed to do.

The main issues concluded by the current work are:

1. Stemming and Stop words removal improve the effectiveness and efficiency

of all statistical techniques and gives more retrieval efficiency in reducing

computations time and increasing accuracy.

2. Results indicate that TFxIDF is the fastest and sufficiently accurate Statistical

Technique. TF and TFxIDF are nearly equivalent in performance and

accuracy. They are faster than TDVM which needs very huge computations

while its accuracy is not much better. It slightly improves precision that is

used to measure accuracy. On the other hand, IDF is not recommended as a

Chapter 6

134

stand alone technique. It needs to be combined with other techniques like TF

to improve its results.

3. If our best results (average recall/precision of 0.781/0.455 for TDVM in the

first experiment and 0.772/0.513 for TFxIDF in the third experiment) are

compared with previous recent studies (Zechner's system with recall/precision

values of 0.55/0.46 in one experiment and 0.74/0.41 in another, and Kerner

system with recall value of 0.617), our results are slightly better. However, the

systems might not be comparable, because they deal with different criteria and

with different techniques and different kinds of domains or documents.

4. Increasing the collection size improves accuracy. On the other hand, the use of

database engines and SQL for computations may improve performance and

reduce time and efforts of programming statistical techniques.

6.2 Future Work

The following are suggestions for future work:

1. Applying the same statistical techniques for multilingual like Arabic or

European languages, and building a stemming algorithm for Arabic language.

In fact a sample Arabic Stemmer was implemented in this research to get the

root of any Arabic verb and its derivatives.

2. Implementing other techniques especially neural networks and Kohonen’s

Self-organizing Map SOM which has been proposed by Teuvo Kohonen for

textual classification and thesauri building.

Chapter 6

135

3. Improving ATEWB to build my own search engine for both English and

Arabic languages and using parallel and distributed computing to improve the

performance of different algorithms used.

Obstacles:

• One of the big troubles facing researchers in Palestinian universities in this

field is the unavailability of Labs and supercomputers needed for huge

computations. Such computations may need a few days to get a result on the

available P4 computers if they continue working without interrupts. This

limits the experiments to be applied on small collections which can not give

the clear picture.

• The limited number of resources in the university libraries, and on the internet.

Most of digital libraries with good references need paid registration, and the

university doesn't register with these libraries.

Lastly, information retrieval is an interesting subject and it deserves to be studied

and improved by researchers, which makes our life easy.

136

Bibliography

[1] Horecky, Jan. 1997. Intension and Extension of a Term. Human Affairs, 7,

1997, 2, 134-140.

[2] Lahtinen, T. 2000. Automatic Indexing: an approach using an index term

corpus and combining linguistic and statistical methods. University of

Helsinki. Ph.D. thesis. Finland.

[3] Daille, B. 1994. Study and Implementation of Combined Techniques for

Automatic Extraction of Terminology. University Paris 7. France.

[4] Salton, G. and Schneider, H. 1982. Lecture Notes in Computer Science.

Research and Development in Information Retrieval. Springer-Verlag,

Berlin Heidelberg New York.

[5] Dunham, M. H. 2003. Data Mining: Introductory and Advanced Topics.

Prentice Hall by Pearson Education, Inc. pg 26.

[6] Ananiadou, S. 1994. A Methodology for Automatic Term Recognition.

Proceedings of COLING94.

[7] Feldman, S. 1999. NLP Meets the Jabberwocky: Natural Language

Processing in Information Retrieval. Information Today.

 Online, http://www.onlinemag.net/OL1999/feldman5.html.

[8] Liddy, E. 1998. Enhanced Text Retrieval Using Natural Language

Processing. ASIS Bulletin.

 On the Web at http://www.asis.org/Bulletin/Apr-98/liddy.html.

137

[9] VanRijsbergen, C.J. 1999. Information Retrieval. University of Glasgow.

Scotland.

[10] Smeaton, A. F. 2000. Indexing, Browsing and Searching of Digital Video

and Digital Audio Information. The third European Summer School

Information in Retrieval (ESSIR 2000).

[11] Jones, G.J.F., Foote, J.T., Sparck Jones, K. and Young, S.J. 1996. Retrieving

spoken documents by combining multiple index sources. In Proceedings of

SIGIR 96, Research and Development in Information Retrieval, 30-38,

Zürich, ACM Press.

[12] Schäuble, P. 1997. Multimedia Information Retrieval. Kluwer Academic

Publishers.

[13] Lee, H., Smeaton, A. F., O'Toole, C., Murphy, N., Marlow, S. and

O'Connor, N. E. 2000. The Físchlár Digital Video Recording, Analysis, and

Browsing System. In Proceedings of RIAO '2000: Content-Based

Multimedia Information Access, Paris.

[14] Perry, B., Chang, S. K., Dinsmore, J., Doermann, D., Rosenfeld, A. and

Stevens, S. 2000. Content-Based Access to Multimedia Information. From

Technology Trends to State of the Art. Kluwer Academic Publishers.

[15] Kageura, K., and Umino, B. 1996. Methods of Automatic Term Recognition.

Japan.

[16] Luhn H. P. 1957. A Statistical Approach to Mechanized Encoding and

searching of Literary Information. IBM Journal of Research and

development 2(2).

138

[17] Salton, G. 1986. Another Look at Automatic Text-Retrieval Systems. Cornell

University. Communications of the ACM, Volume 29, Issue 7. USA.

[18] Robertson, S. E. & Spark Jones, K. 1997. Simple, proven approaches to text

retrieval. Technical report 356, Computer Laboratory, University of

Cambridge.

[19] Abuzir, Y. and Kaczmarski, P. The use of ADM for Project Development

and Control: A Quantitative approach. CCAI-The journal for the integrated

study of Artificial Intelligence, Cognitive Science and Applied

Epistemology -Communication & Cognition, Vol. 18 n° 3-4, Gent-Belgium.

[20] Abuzir, Y. 2004. Deriving Concepts Hierarchies. Proceedings CLUK2004

conference. University of Birmingham. England. January 2004.

[21] Abuzir, Y., Van Vosselen, N. Gierts, Kaczmarski, S. P., and Vandamme, F.

2002. MARIND Thesaurus for Indexing and Classifying Documents in the

Field of Marine Transportation. Proceedings MEET/ MARIND 2002 Oct.

6-1. Varna Bulgaria. 2002.

[22] Abuzir, Y. E-mail Classification based on Thesaurus. CCAI-The journal for

the integrated study of Artificial Intelligence, Cognitive Science and

Applied Epistemology -Communication & Cognition, Vol. 18 n° 3-4, Gent-

Belgium.

[23] Cleveland, G. 1995. Overview of Document Management Technology.

Information Technology Services. National Library of Canada.

[24] Boyce, B. R., Meadow, C. T. and Kraft, C. T. 1995. Measurement in

Information Science. New York Academic Press.

139

[25] American National Standards Institutes. 1968. Basic Criteria for Indexes.

ANSI Z39.4, New York.

[26] Borko, H., and Bernier, C. L. 1978. Indexing concepts and methods.

Academic Press Inc., New York.

[27] Allan, J. Fall 2003. Slide show in IR lectures. Text Indexing (indexing

model). University of Massachusetts Amherst.

[28] Wilson, B. 1998, 2004. The Natural Language Processing Dictionary. The

University of New South Wales. Australia. Bill Wilson’s home page:

http://www.cse.unsw.edu.au/~billw/nlpdict.html#corpus, last visited on

Sept. 2004.

[29] Cleverdon, C. W., and Keen, E. M. 1966. Aslib-Cranfield Research Project.

Vol. 2. Test Results. Cranfield Institute of Technology. England.

[30] Salton. G. 1973. Recent Studies in Automatic Text Analysis and Document

Retrieval. ACM 20, 2, 258-278. An evaluation of various automatic text-

analysis and indexing methods.

[31] Spark-Jones, K. 1972. A Statistical Interpretation of Term Specificity and its

Application in Retrieval. Journal of Documentation 28(1), 11-21.

[32] Salton, G. and Yang, C. S. 1973. On the Specification of Term Values in

Automatic Indexing. Journal of Documentation 29(4) 351-372.

[33] Salton, G. 1975. A Theory of Indexing. Vol. 18 of Regional Conference

Series in Applied Mathematics. Society for Industrial and Applied

Mathematics, Philadelphia.

[34] Porter, M. F. 1980. An Algorithm for Suffix Stripping. Originally published

140

in Program, 14 no. 3, pp 130-137, July 1980.

[35] Lippmann, R. P. 1987. An introduction to computing with neural nets. IEEE

ASSP Magazine, 4-22.

[36] Doszkocs, T. E., Reggia, J., and Lin, X. 1990. Connectionist models and

information retrieval. Annual Review of Information Science and

Technology (ARIST), 25.

[37] He, Q. 1999. Neural Network and Its Application in IR. University of

Illinois.

[38] Kohonen, T. 1988. Self-Organization and Associative Memory. 2nd Edition.

Berlin: Springer-Verlag.

[39] Pape, D. X. 1998. http://www.canis.uiuc.edu/interspace/showcase.html. last

visited on April 1, 2005.

[40] Orwig, R. E., Chen, H., and Nunamaker, J. F. 1997. A graphical, self-

organizing approach to classifying electronic meeting output. Journal of the

American Society for Information Science, 48(2), 157-170.

[41] Chung, Y. M., Potternger, W. M., and Schatz, B. R. 1998. Automatic

Subject Indexing Using an Associative Neural Network. Digital Libraries 98.

The 3rd ACM conference on digital libraries.

[42] Crestani, F., Lalmas M., van Rijsbergen, C. J., and Campbell, I. 1998. A

Survey of Probabilistic Models in Information Retrieval. ACM Computing

Surveys.

[43] Salton, G. 1986. Recent Trends in Automatic Information retrieval. Cornell

University.

141

[44] Schwarz, C. 1990. Automatic Syntactic Analysis of Free Text. Journal of the

American Society for Information Science, 41(6): 408-417.

[45] Salton, G. 1966. Automatic Phrase Matching. In Hays (Ed.) Readings in

Automatic Language Processing, New York.

[46] Hersh, W.R. and Molnar, A. 1995. Towards New Measures of Information

Retrieval Evaluation. Proceedings of the 18th ACM-SIGIR International

Conference on Research and Development in Information Retrieval, Seattle,

WA, USA, 164-170.

[47] Gao X., Murugesan, S. and Lo, B. 1998. Multi-dimensional Evaluation of

Information Retrieval Results. Computer Society, Proceedings of

IEEE/WIC/ACM international conference.

[48] Pollit, A. S. 1989. Information Storage and Retrieval Systems: Origin,

Development and Applications. Toronto, John Wiley & Sons, 164-165.

[49] Bennett, N. A. H., Qin. Powell, K., and Schatz, B. R. 1999. Extracting Noun

Phrases for all of MEDLINE. University of Illinois at Urbana-Champaign.

Proc AMIA Symposium.

[50] Belnab, N. D. and Steel T.B. 1996. The Logic of Questions and Answers.

Yale University Press, New Haven and London.

[51] Chang, C.L. and Lee, R.T.C. 1973. Symbolic Logic and Mechanical

Theorem Proving. Academic Press, New York.

[52] Good, I.J. 1967. The decision-theory approach to the evaluation of

information retrieval systems, Information Storage and Retrieval, 3, 31-34.

[53] Spark-Jones, K. 1973. Index Term Weighting. Information Storage and

142

Retrieval 9(11).

[54] Noreault, T., McGill, M., and Koll, M. B. 1977. A Performance Evaluation

of Similarity Measure, Document Term Weighting Schemes and

Representation in a Boolean Environment. In Oddy, R. N. (ed.), Information

Retrieval Research. London.

[55] Church, K. W. and Gale, W. A. Inverse Document Frequency (IDF), A

Measure of Deviations from Poisson. Gale ATT Bell Laboratories Murray

Hill, NJ, USA.

[56] Robertson, S. E. et al. 1995. Okapi at TREC-3, in Harman, D. (Ed)

Overview ….(TREC-3). NIST SP 500-225, 1995, 109-126.

[57] Dubian, David S. 1998. Further Cautions for the Calculation of

Discrimination Values. Graduate School of Library and Information

Science. University of Illinois at Urbana-Champaign. 1-2.

[58] The web site http://home.od.ua/~relayer/algo/text/stem.html, last time

visited Nov. 28 2004.

[59] NPL collection. IR resources. IR Group Web site. University of Glasgow.

Led by Professor Keith van Rijsbergen. http://ir.dcs.gla.ac.uk/ir_resources.

[60] Zechner, K. 1996. Fast Generation of Abstracts from General Domain Text

Corpora by Extracting Relevant Sentences. Proceedings of Computational

Linguistics Conference.

[61] Kerner, Y. H. 2003. Automatic Extraction of Keywords from Abstracts.

Knowledge-Based Intelligent Information and Engineering Systems:

Proceedings of 7th International Conference, KES, UK.

I

A. Appendix A

Here are the key words or index terms and stop-words used for experiments 1-3.

Experiment1 Keywords Experiment2 Keywords Experiment3 Keywords
algorithm statistical cascad pressure acoust skin
ambiguity summarization circuits principle admitt solar
analysis tagging computations probablistic ammonia spark
classification term direct processing bai sphere
cluster terminology discharg progress balanc stabil
clustering terms electronics properties caviti theori
compound values field propose circuit time
content weighting filter proton cloud triod
discrimination flare pump coat turbul
discriminative geomagnetic reaches common variat
distribution linear resistance comput vehicl
domain mode shift conductor absorb
extracting model signal conjug anod
extraction module silver divid area
index multiple skin eclip code
information natural solar effect colour
language near stabilization electrod content
lead number subharmonic electron cosmic
model numerical switches field deton
network observ system gap fade
neural orbits transfer irregular faradai
none origin transistor kmc geomagnet
noun oscilation layer hamiltonian
paragraphs parameters matric height
parser particles matrix helic
phrases plane meteor highaltitud
regularity plasma morpholog index
retrieval polar optimum
sentence portion outer
similarity power plasma

II

Stop-Words List
calculate consequence do explained handling just

calculated consequences does explaining harmfull keep
called consequently domain extra harmfully kept
can consider domains fairly has know

cannot considerable done favourable have knowing
careful considerably due few having known

carefully consideration during fewer he knows
carried considerations each fig held lead
carry contain early figure hence leading
catch containing easier figures here leads

certain contrary easily find highly like
change could efficiency finds his made
clear data efficient follow holding make

clearly define either followed holds making
collaborate defined en following hour(s) many

collaborated delay end follows however may
collaborates delayed enough for I maybe
collaboration demand ensure found if me

commonly department entering from illustrates mean
commonly depending especially further illustrating meaning
completely describe essential furthermore in means
concerned described essentially general include might
concerning describes estimated generally including more
conclude details et give indicating moreover
concluded difference etc given into most
concludes different even gives introduced move
conclusion difficult every giving introduction much

conduct discuss ex good is must
conducted discussed example guess it name
conducts discussing explain had its Named
namely possibly serious summary u why

need previous several table under will
needed previously shall take until with

next probably should taken up within
no proceed show akes upon without
not proceeded showed taking upper would
now proceedings shown talking use yes

observe rather shows tells used you
observed recent similar than useful

obtain regardless simulate that uses
occur report since the using

of required small their usual
offer requirement so them usually

offers requirements some then various

III

often requires sometimes theory vary
on resulting somewhat there varying

only rise soon thereby versus
or rises specific therefore very

order s still these was
other same studied they we
others sample study this well

our samples success thorough were
out say successfull those when

over section successfully thought where
overview see such through whereas
paragraph seem suggest thus whether

phothograph seems suggested to which
photographs seen suggesting too while
possibility seldom suggests troublesome whole
possible sender suitable tryout whose

IV

B. Appendix B

B.1 ATEWB System Installation

B.1.1 Microsoft windows environment

To install ATEWB package for windows, follow the instructions below:

1. Install MYSQL version 5.0 or later for windows from the CD attached

with this thesis on the path X:\Win2KXP\mysql where X is drive letter, or you

can download it from the website http://www.mysql.com.

2. Install The Java Runtime Environment from X:\Win2KXP\JRE or download it

from web at http://java.sun.com/j2se/1.4.2/download.html.

3. Copy ATEWB executable JAR from X:\Win2KXP\ATEWB any where in your

hard drive and create a shortcut on the desktop.

4. Start MYSQL server from command prompt by the command line

Y:\MYSQL\bin\mysqld.exe --max_allowed_packet=160000, where Y is the drive letter

where you have installed MYSQL. Then double click ATEWB shortcut to

start.

B.1.2 Linux RedHat environment

To install ATEWB package for Linux, follow the instructions below:

1. Install MYSQL5.0 or later for Linux, from cdrom/linux/mysql from the

attached CD, or download it from the website http://www.mysql.com.

V

2. Install The Java Runtime Environment from cdrom/linux/jre or download it

from the website http://java.sun.com/j2se/1.4.2/download.html.

3. Copy ATEWB executable JAR from cdrom/linux/atewb to your hard drive and

create a shortcut on the desktop with X-windows.

4. Start MYSQL server by the command mysql/bin#./mysqld --

max_allowed_packet=160000 , and double click ATEWB or use the command

atewb path# ./atewb to start ATEWB. You are ready to extract index terms.

VI

C. Appendix C

C.1 Working with ATEWB

This section describes how to use ATEWB; this includes installation and using the

package through screenshots for each step. Refer to Section 5.5 for minimum

system requirements to install and run ATEWB. To install ATEWB on both

Microsoft windows and/or UNIX, refer to Appendix B.

C.1.1 Using ATEWB

To start ATEWB use the following instructions:

1. After installation, Double click on the ATEWB executable jar; the main

screen will appear, as shown in figure C.1.

Figure C.1: ATEWB main screen

VII

2. To start a new project, select "New ATE" from "File" menu, see figure

C.2, a dialog box appears with the title New Project. This dialog is used to

set project options. See figure C.3.

3. To change project options, use New Project dialog box. See figure C.3. To

select file type in the collection, use "File Type" pull down menu and

select txt, htm or html to search for text, htm or html files respectively. If

stemming is to be used select "Porter’s Stemming" from "Options" tab, if

not select "No Stemming". See figure C.3.

Figure C.2: ATEWB File menu

Figure C.3: ATEWB New Project dialog box

VIII

4. To select a stop word list use "Stopword List" pull down menu in the

"Options" tab, and select the list to be used or none for no list. See figure

C.4. When options done click "OK" to continue or "Cancel" to cancel.

Figure C.4: ATEWB New Project options

5. To browse the document collection folder, click on ellipsis (….) button in

figure C.4, "Open" dialog box appears. See figure C.5. Navigate the hard

drive for the collection folder, select and click "Open" to continue or

"Cancel" to stop.

Figure C.5: ATEWB browser

IX

6. To create a new database with its tables and initialize them, select "Create

New Database" submenu in "File" menu. See figure C.2. "Create New

Database" dialog box appears. See figure C.6. Enter database name and

click "OK" to continue, "Cancel" to exit.

Figure C.6: Create New Database dialog box.

7. Next step is to connect to MYSQL database server, to do so click on

"Connect to Database Server" submenu in "File" menu, "Database

Options" dialog box appears. Click "OK" to use default information or

enter user name, password, schema (database name) and database server

name or IP address. Click "OK" to continue, "Cancel" to stop. See figure

C.7.

8. To start reading the documents in the collection and parsing words, click

"Parse" submenu in "File" menu. See figure C.2. While parsing, project

options like stemmer and stop list are taken into consideration.

9. To choose which statistical technique for ATE to weight the terms, click

one of the four techniques in "Statistical Technique" submenu in "ATE"

X

main menu. See figure C.8. Select "Compute TF" for TF weighting,

"Compute IDF" for IDF weighting, "Compute TFxIDF" for TFxIDF

weighting or "Compute TDV" for TDV weighting.

Figure C.7: ATEWB Database Options dialog box.

Figure C.8: ATEWB ATE menu with its submenus

10. Select "TF Result" to view term frequency technique result, "IDF Result"

to view inverse document frequency technique result, "TFxIDF Result" to

view TFxIDF result and "TDVM Result" to view TDVM result. Each time

a dialog box appears to set the condition and the order in which the result

(index term selected by the system) will appear, see figure C.9. To use

default settings just click "Show Result" button to view the result, or set

XI

the condition (s) and the name of the field by which the result will be

ordered and click "Done" button then "Show Result" button to view the

result. Click "Cancel" button to cancel the operation.

Figure C.9: Conditions of selected index terms.

11. TF result appears as a screen divided by a splitter into two areas. The first

is a table of terms and their weights, the second is a preview text area

containing the document. If a term in the table is clicked, the document

containing it appears with the term distribution in the document marked

using a different color. See figure C.10.

12. Select "IDF Result" to view the result of inverse document frequency

technique, a screen divided into two areas appears. The first is a table of

terms and their weights computed by IDF, the second is a text area

containing the document full path. If a term in the table is clicked, a list of

documents containing it appears with their full path (collection path). See

figure C.11.

13. Select "TFxIDF Result" to view the result of combined TF-IDF technique,

a screen divided into two areas appears. The first is a table of terms and

XII

Figure C.10: ATEWB term frequency result screen

Figure C.11 ATEWB IDF result screen

XIII

Figure C.12: ATEWB TFxIDF result screen

Figure C.13: ATEWB TDVM result screen

XIV

their weights, the second is a preview text area containing the document. If

a term in the table is clicked, the document containing it appears with the

term marked using different color. See figure C.12.

14. Select "TDVM Result" to view the result of TDVM technique, a screen

divided into two areas appears. The first is a table of terms and their

discrimination values, the second is a text area containing the document

full path. If a term in the table is clicked, a list of documents containing it

appears with their full path (collection path). See figure C.13.

15. To get the total number of documents in the collection, click "Number of

Documents" submenu in "ATE" main menu. Finally, to get the total

number of terms in the collection, click "Total Number of Terms" in

"ATE" main menu, see figure C.8. The result appears in two text fields in

the main screen. See figure C.14.

Figure C.14: ATEWB document summery

XV

16. To show the original relevant index terms or keywords that to be

compared with the index terms extracted by ATEWB, save them in a

document and click "Create Keywords" in "Tools" menu, see figure C.15.

Figure C.15: ATEWB tools menu

17. Click "Select Source" in "Create Keywords" submenu to browse the folder

containing the keywords document, Parse to parse the keywords and

"Show List" to view the keywords, see figure C.16. The result is a table

containing the keywords and their IDs. These keywords are used to

evaluate the system by computing Recall, Precision, Noise and Efficiency

that measure ATEWB performance.

18. To evaluate the index terms selected by the system, click "Evaluation" in

"Tools" menu. "Evaluation" dialog box appears with four buttons, one for

each statistical technique, see figure C.17.

XVI

Figure C.16: Keywords list result

Figure C.17: ATEWB Evaluation dialog box.

XVII

19. Click "TF" button to evaluate TF technique, "IDF" to evaluate IDF

technique, "TFxIDF" to evaluate TFxIDF technique and "TDVM" to

evaluate TDVM technique. Click "Cancel" to exit.

20. To use a calculator, click "Calculator" in "Tools" menu, which calls the

calculator tool in the OS if exists. See figure C.18.

Figure C.18: Windows Calculator.

XVIII

D. Appendix D

D.1 ATEWB JAVA and MYSQL Complete Code

Here we present the implementation of our developed tool (ATEWB). It includes

the complete Java and MYSQL code of all statistical techniques, Porter's

stemming, stop words removal, and the evaluation module. The soft copy of this

code and executable JAR file are also included in the attached CD-ROM.

